CS11-711 Advanced NLP

Bullding a Neural Network
Toolkit for NLP

minnn

Graham Neubig
P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/anip2021/

https://phontron.com/class/anlp2021/

Neural Network Frameworks

theano dy/net
Caffe o

Chainer
PYTSRCH
Ten;o?m (’{A{f::'%

minnn

Example App:
Deep CBOW Model

hate this movie

— — b <
b < + b < + b <
b < b < b4
N~ T~

S, r
& b < b <
& b b
w8 g =
b b
> <
A d

b4 b

bias scores

Algorithm Sketch for
NN App Code

e Create a model
 For each example

* create a graph that represents the computation you
want

e calculate the result of that computation
 |f training

* perform back propagation

* update parameters

lensors and Numerical
Computation

Numerical Computation Backend

e Most neural network libraries use a backend for numerical
computation

 PyTorch/Tensorflow: MKL, CUDNN, custom-written
kernels

 minnn: numpy/CuPy

import numpy as np

a = [[1, 1, [U,
b = [[4, 1, [Z,
np.dot (a, b)
array (L[4, 1],

r 211)

 Many many different operations

 CuPy is a clone of NumPy that works on GPU

lensors

 An n-dimensional array

Scalar Vector Matrix 3-dim Tensor
2

e

 Widely used in neural networks

 Implementation in minnn saves both values and gradients

lensors In Neural Networks

| hate this movie

(Iookupj [Iookup) [Iookup Ioo Cs:r;eni);fif:t
2 2 ,‘ intermediate values

l\ — -+ =
b4 b
h d e d

bias scores

Tensor Data Structure
Definition

class Tensor:
def 1nit (self, data: xp.ndarray):
self.data: xp.ndarray = data

self.grad: Union[Dict[int, xp.ndarray], xp.ndarray] = None

self.op: Op = None

Model and Parameter
Definition

Algorithm Sketch

» Create a model

* For each example

* create a graph that represents the computation you
want

e calculate the result of that computation
 |f training

* perform back propagation

* update parameters

Example Model Creation
(in App Code)

EMB SIZE args.emb size
HID SIZE = args.hid size
HID LAY = args.hid layer

W emb = model.add parameters((nwords, EMB SIZE))

W h = [model.add parameters (
(HID SIZE, EMB SIZE if lay == 0 else HID SIZE),
initializer="xavier uniform')
for lay in range (HID LAY)]

W sm = model.add parameters ((ntags, HID SIZE),
lnitializer="xavier uniform')

Model Class,
Adding Parameters

class Model:
def 1nit (self):
self.params: List[Parameter] = []

def add parameters(self, shape,
initializer="normal',

**1niltialilzer kwargs):

1nit f = getattr(Initializer, 1nitializer)
data = 1nit f (shape, **1nitializer kwargs)
param = Parameter (data)

self.params.append (param)
return param

Parameter Initialization

 Neural nets must have weights that are not identical to
learn non-identical features

- Uniform Initialization: |nitialize weights in some range,
such as [-0.1, 0.1] for example

- Problem! Depending on the size of the net, inputs to
downstream nodes may be very large

- Glorot (Xavier) Initialization, He Initialization: Initialize
based on the size of the matrix

Glorot Init: \/dm i

Computation Definition

NN App Algorithm Sketch

* Create a model Greedy Computation

+ For each example (ct Lazy Computation)

. create a graph that represents the computation you w
want

~ « calculate the result of that computation

|

 |f training
* perform back propagation
* update parameters

expression:
X

graph:

expression:

x '

graph:

expression:
x' A

graph:

expression:
x| Ax

graph:

expression:
x'Ax+b-x+c

graph:

expression:
y=xAx+b-x+c

graph:

Example Graph Creation
(in App Code)

mn.reset computation graph ()

emb = mn.lookup (W emb, words)
h = mn.sum(emb, axis=0)
for W h 1, b h 1 1n zip
h = mn.tanh (mn.dot (
return mn.dot (W sm, h)

W h, b h):
h 1, h) + b h 1)
b sm

(
W
|

Computation Graph

class ComputationGraph:

~cg: '"ComputationGraph' = None
dclassmethod
def get cg(cls, reset=False):
1f ComputationGraph. cg 1s None or reset:
ComputationGraph. cg = ComputationGraph ()
return ComputationGraph. cg

def init (self):
self.ops: List[Op] = []

def reg op(self, op: Op):
assert op.1dx 1s None
op.1dx = len(self.ops)
self.ops.append (op)

Operations

o Operations must know:
 Forward: how to calculate their value given input

f(ua)

 Backward: how to calculate their derivative given
following derivative

Of(u) OF
ou Jf(u)

Value

Example Op:
Re‘u Gradient

class OpRelu (Op) :
def forward(self, t: Tensor):
arr relu = t.data
arr relularr relu <] =
t relu = Tensor (arr relu)
self.store ctx(t=t, t relu=t relu, arr relu=arr relu)
return t relu

def backward(self) :

t, t relu, arr relu = self.get ctx('t', 't relu', 'arr relu')
if t relu.grad is not None:
grad t = xp.where(arr relu > , ,) * t relu.grad

t.accumulate grad(grad t)

def relu(param): return OpRelu().full forward (param)

Back Propagation

NN App Algorithm Sketch

Create a model
For each example

* create a graph that represents the computation you
want

e calculate the result of that computation
 |f training

- peror Back propagation |

* update parameters

Back Propagation

graph:

Backward Code

def backward(t: Tensor, alpha=1l.):
t.accumulate grad(alpha)
op = T.0p
cg = ComputationGraph.get cg()

for 1dx 1in reversed(range (op.1dx+1)) :
cg.ops[idx] .backward ()

Parameter Update

NN App Algorithm Sketch

Create a model
For each example

* create a graph that represents the computation you
want

e calculate the result of that computation
 |f training
* perform back propagatlon

. update parameters - * W

Many Different Update Rules

 Simple SGD: update with only gradients

 Momentum: update w/ running average of
gradient

 Adagrad: update downweighting high-variance
values

 Adam: update w/ running average of gradient,
downweighting by running average of variance

Standard SGD

 Reminder: Standard stochastic gradient descent does

gt — vet—lg(et—l)

Gradient of Loss

0y =01 — Qgt

Learning Rate

* There are many other optimization options! (see
Ruder 2016 in references)

SGD Update Rule

class SGDTrainer (Trainer) :
def init (self, model: Model, lrate=) :
super () init (model)
self.lrate = lrate

def update(self):
lrate = self.lrate
for p in self.model.params:
if p.grad is not None:
if i1sinstance(p.grad, dict):
self.update sparse(p, p.grad, lrate)
else:
self.update dense(p, p.grad, lrate)

p.grad = None

def update dense(self, p: Parameter, g: xp.ndarray, lrate: float):
p.data -= lrate * g

def update sparse(self, p: Parameter,
gs: Dict[int, xp.ndarray], lrate: float):
for widx, arr in gs.items{() :
p.data[widx] -= lrate * arr

SGD With Momentum

« Remember gradients from past time steps

V¢ = YU¢—1 1+ NG¢

Previous Momentum

Momentum
Momentum

Conservation
Parameter

0y =0i_1 — vy

- Intuition: Prevent instability resulting from sudden changes

Adagrad

* Adaptively reduce learning rate based on
accumulated variance of the gradients

G =Gi—1+ 9+ © gy

Squared Current Gradient

Ui
\/Gt —|—€gt

— Small Constant

 Intuition: frequently updated parameters (e.g. common word
embeddings) should be updated less

- Problem: |learning rate continuously decreases, and training can
stall -- fixed by using rolling average in AdaDelta and RMSProp

Adam

Most standard optimization option in NLP and beyond
Considers rolling average of gradient, and momentum

my = Bime—1 + (1 — B1)9: Momentum
vy = BaUs—1 + (1 — 52)% © g+ Rolling Average of Gradient

Correction of bias early in training
my . Ut

T1-(B)t 1 (B

Final update

A

Uz

Training Iricks

Shuftling the Training Data

e Stochastic gradient methods update the
parameters a little bit at a time

e \What if we have the sentence “l love this
sentence so much!” at the end of the training
data 50 times”?

e Jo train correctly, we should randomly shuftle the
order at each time step

Simple Methods to Prevent Over-fitting

 Neural nets have tons of parameters: we want to prevent
them from over-fitting

« Early stopping:

e monitor performance on held-out development data
and stop training when it starts to get worse

 Learning rate decay:
« gradually reduce learning rate as training continues, or
e reduce learning rate when dev performance plateaus

- Patience:

- learning can be unstable, so sometimes avoid
stopping or decay until the dev pertformance gets
worse n times

Which One to Use?

Adam is usually fast to converge and stable

But simple SGD tends to do very will in terms of
generalization (Wilson et al. 2017)

You should use learning rate decay, (e.g. on Machine
translation results by Denkowski & Neubig 2017)

WMT German-English

—&— Adam
—#— SGD

15 20
Training Sentences (millions)

BLEU

14

12

11;

WMT English-Finnish

—&— Adam
—i— SGD

8 10 12 14
Training Sentences (millions)

BLEU

271

251

WMT Romanian-English

—&— Adam |
—#— SGD

4 6
Training Sentences (millions)

Dropout

(Srivastava+ 14)

* Neural nets have lots of parameters, and are prone
to overfitting

Dropout: randomly zero-out nodes in the hidden
layer with probability p at training time only

« Because the number of nodes at training/test is different, scaling is
necessary:

« Standard dropout: scale by p at test time
 Inverted dropout: scale by 1/(1-p) at training time

* An alternative: DropConnect (Wan+ 2013) instead zeros out
weights in the NN

Efficiency Tricks:
Operation Batching

Efficiency Tricks:
Mini-batching

 On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

* Minibatching combines together smaller operations
INto one big one

Minibatching

Operations w/o Minibatching

W x, b W
tanh(eee® 2 + 2) tanh(eee®
o O
Operations with Minibatching
X, X, X, %concath
W X

tanh(o.&i‘:

W X

w

b
f) tanh(eee
®

[
o
@

r——{broadcast%— b
B

+§)

Procedure of Minibatching

 Group together similar operations (e.g. loss

calculations for a single word) and execute them all
together

* In the case of a feed-forward language model, each
word prediction In a sentence can be batcheo

e [or recurrent neural nets, etc., more complicated
 How this works depends on toolkit

 Most toolkits have require you to add an extra
dimension representing the batch size

o Some toolkits have explicit tools that help with
batching

Assignment

Still Some Things Letft!

e We've letft off the details of some underlying parts.
 What about more operations?
 What about more optimizers”?

- Challenge: can you make a more sophisticated
model”

https://github.com/neubig/minnn-assignment/

https://github.com/neubig/minnn-assignment/

Questions?

