CS11-711 Advanced NLP Language Modeling and Neural Networks

Graham Neubig
Carnegie Mellon University
Language Technologies Institute
Site https://phontron.com/class/anlp2022/

Are These Sentences OK?

- Jane went to the store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.
- The food truck went to Jane.

Engineering Solutions

- Jane went to the store.
- store to Jane went the.
- Jane went store.

Create a grammar of the language

- Jane goed to the store. \}

Consider
morphology and exceptions

- The store went to Jane. \} $\begin{aligned} & \text { Semantic categories, } \\ & \text { preferences }\end{aligned}$
- The food truck went to Jane.\} And their exceptions

Probabilistic Language Models

$$
P(X)=\prod_{i=1}^{I} \frac{P\left(x_{i} \mid\right.}{\prod_{\text {Next Word }} \frac{\left.x_{1}, \ldots, x_{i-1}\right)}{\upharpoonleft}}
$$

The big problem: How do we predict

$$
P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

What Can we Do w/ LMs?

- Score sentences:

> Jane went to the store.\rightarrow high store to Jane went the \rightarrow low
> (same as calculating loss for training)

- Generate sentences:
while didn't choose end-of-sentence symbol:
calculate probability
sample a new word from the probability distribution

Count-based Language Models

Review: Count-based Unigram Model

- Independence assumption: $P\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right) \approx P\left(x_{i}\right)$
- Count-based maximum-likelihood estimation:

$$
P_{\mathrm{MLE}}\left(x_{i}\right)=\frac{c_{\text {train }}\left(x_{i}\right)}{\sum_{\tilde{x}} c_{\text {train }}(\tilde{x})}
$$

- Interpolation w/ UNK model:

$$
P\left(x_{i}\right)=\left(1-\lambda_{\mathrm{unk}}\right) * P_{\mathrm{MLE}}\left(x_{i}\right)+\lambda_{\mathrm{unk}} * P_{\mathrm{unk}}\left(x_{i}\right)
$$

Higher-order n-gram Models

- Limit context length to n, count, and divide

$$
P_{M L}\left(x_{i} \mid x_{i-n+1}, \ldots, x_{i-1}\right):=\frac{c\left(x_{i-n+1}, \ldots, x_{i}\right)}{c\left(x_{i-n+1}, \ldots, x_{i-1}\right)}
$$

$P($ example \mid this is $a)=\frac{c(\text { this is an example })}{c(\text { this is an })}$

- Add smoothing, to deal with zero counts:

$$
\begin{aligned}
P\left(x_{i} \mid x_{i-n+1}, \ldots, x_{i-1}\right)= & \lambda P_{M L}\left(x_{i} \mid x_{i-n+1}, \ldots, x_{i-1}\right) \\
& +(1-\lambda) P\left(x_{i} \mid x_{1-n+2}, \ldots, x_{i-1}\right)
\end{aligned}
$$

Smoothing Methods (e.g. Goodman 1998)

- Additive/Dirichlet:
fallback distribution

$$
P\left(x_{i} \mid x_{i-n+1}, \ldots, x_{i-1}\right):=\frac{c\left(x_{i-n+1}, \ldots, x_{i}\right)+\bar{\alpha} \overline{P\left(x_{i} \mid x_{i-n+2}, \ldots, x_{i-1}\right)}}{c\left(x_{i-n+1}, \ldots, x_{i-1}\right)+\bar{\alpha}} \text { interpolation hyperparameter }
$$

- Discounting:
discount hyperparameter
$P\left(x_{i} \mid x_{i-n+1}, \ldots, x_{i-1}\right):=\frac{\left.c\left(x_{i-n+1}, \ldots, x_{i}\right)-\bar{d}\right]-\bar{\alpha} P\left(x_{i} \mid x_{i-n+2}, \ldots, x_{i-1}\right)}{c\left(x_{i-n+1}, \ldots, x_{i-1}\right)}$
interpolation calculated by sum of discounts $\quad \bar{\alpha}=\sum_{\left\{\tilde{x} ; c\left(x_{i-n+1}, \ldots, \tilde{x}\right)>0\right\}} d$
- Kneser-Ney: discounting w/ modification of the lower-order distribution

Goodman. An Empirical Study of Smoothing Techniques for Language Modeling. 1998.

Problems and Solutions?

- Cannot share strength among similar words she bought a car she bought a bicycle she purchased a car she purchased a bicycle
\rightarrow solution: class based language models
- Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith
\rightarrow solution: skip-gram language models

- Cannot handle long-distance dependencies for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer
\rightarrow solution: cache, trigger, topic, syntactic models, etc.

When to Use n-gram Models?

- Neural language models (next) achieve better performance, but
- n-gram models are extremely fast to estimate/apply
- n-gram models can be better at modeling lowfrequency phenomena
- Toolkit: kenlm
https://github.com/kpu/kenlm

LM Evaluation

Evaluation of LMs

- Log-likelihood:

$$
L L\left(\mathcal{E}_{\text {test }}\right)=\sum_{E \in \mathcal{E}_{\text {test }}} \log P(E)
$$

- Per-word Log Likelihood:

$$
W L L\left(\mathcal{E}_{\text {test }}\right)=\frac{1}{\sum_{E \in \mathcal{E}_{\text {test }}}|E|} \sum_{E \in \mathcal{E}_{\text {test }}} \log P(E)
$$

- Per-word (Cross) Entropy:

$$
\begin{gathered}
H\left(\mathcal{E}_{\text {test }}\right)=\frac{1}{\sum_{E \in \mathcal{E}_{\text {test }}}|E|} \sum_{E \in \mathcal{E}_{\text {test }}}-\log _{2} P(E) \text {) } \text { nlexitv. }
\end{gathered}
$$

- Perplexity:

$$
\operatorname{ppl}\left(\mathcal{E}_{\text {test }}\right)=2^{H\left(\mathcal{E}_{\text {test }}\right)}=e^{-W L L\left(\mathcal{E}_{\text {test }}\right)}
$$

Unknown Words

- Necessity for UNK words
- We won't have all the words in the world in training data
- Larger vocabularies require more memory and computation time
- Common ways:
- Limit vocabulary by frequency threshold (usually UNK <= 1) or rank threshold
- Model characters or subwords

Evaluation and Vocabulary

- Important: the vocabulary must be the same over models you compare
- Or more accurately, all models must be able to generate the test set (it's OK if they can generate more than the test set, but not less)
- e.g. Comparing a character-based model to a word-based model is fair, but not vice-versa

An Alternative:
Featurized Log-Linear Models
(Rosenfeld 1996)

An Alternative: Featurized Models

- Calculate features of the context
- Based on the features, calculate probabilities
- Optimize feature weights using gradient descent, etc.

An Alternative: Featurized Models

- Calculate features of the context, calculate probabilities

- Feature weights optimized by SGD, etc.
- What are similarities/differences w/ BOW classifier?

Example:

Previous words: "giving a"

a	$\left(\begin{array}{l}3.0 \\ 2.5\end{array}\right.$	$\left(\begin{array}{l}-6.0 \\ -5.1\end{array}\right.$	$\binom{-0.2}{-0.3}$	$\binom{-3.2}{-2.9}$
talk	$b=-0.2$	$=0.2$	- 1.0	1.0
gift	0.1	0.1	2.0	2.2
hat	1.2	0.5	-1.2	0.6
re	w likely	How likely	y How likely	
predicting	are they?	given prev.	v. given 2nd prev.	score
		word is "a"?	"? word is "giving"?	

Reminder: Training
 Algorithm

- Calculate the gradient of the loss function with respect to the parameters

$$
\frac{\partial \mathcal{L}_{\text {train }}(\theta)}{\partial \theta}
$$

- How? Use the chain rule / back-propagation. More in a second
- Update to move in a direction that decreases the loss

$$
\theta \leftarrow \theta-\alpha \frac{\partial \mathcal{L}_{\text {train }}(\theta)}{\partial \theta}
$$

What Problems are Handled?

- Cannot share strength among similar words
she bought a car she purchased a car she bought a bicycle she purchased a bicycle
\rightarrow not solved yet
- Cannot condition on context with intervening words Dr. Jane Smith Dr. Gertrude Smith
\rightarrow solved! :
- Cannot handle long-distance dependencies for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer
\rightarrow not solved yet

Beyond Linear Models

Linear Models can't Learn Feature Combinations

students take tests \rightarrow high teachers take tests \rightarrow low students write tests \rightarrow low teachers write tests \rightarrow high

- These can't be expressed by linear features
-What can we do?
- Remember combinations as features (individual scores for "students take", "teachers write") \rightarrow Feature space explosion!
- Neural networks!

"Neural" Nets

Original Motivation: Neurons in the Brain

Current Conception: Computation Graphs

expression:

x

graph:

A node is a \{tensor, matrix, vector, scalar\} value
\square

An edge represents a function argument (and also an data dependency). They are just pointers to nodes.

A node with an incoming edge is a function of that edge's tail node.

A node knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial F}{\partial f(u)}$.

expression:

$$
\mathbf{x}^{\top} \mathbf{A}
$$

graph:
Functions can be nullary, unary, binary, ... n-ary. Often they are unary or binary.

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

Computation graphs are generally directed and acyclic
expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

expression:

$$
y=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

variable names are just labelings of nodes.

Algorithms (1)

- Graph construction
- Forward propagation
- In topological order, compute the value of the node given its inputs

Forward Propagation

graph:

Algorithms (2)

- Back-propagation:
- Process examples in reverse topological order
- Calculate the derivatives of the parameters with respect to the final value
- Parameter update:
- Move the parameters in the direction of this derivative
W-= a*dl/dW

Back Propagation

graph:

Much more detail next class!

Back to Language Modeling

Feed-forward Neural Language Models

giving a

- (See Bengio et al. 2003)

bias scores

Example of Combination Features

- Word embeddings capture features of words
- e.g. feature 1 indicates verbs, feature 2 indicates determiners
- A row in the weight matrix (together with the bias) can capture particular combinations of these features
- e.g. the 34th row in the weight matrix looks at feature 1 in the second-to-previous word, and feature 2 in the previous word

Where is Strength Shared?

giving a

Tying Input/Output

 Embeddings

Want to try? Delete the input embeddings, and instead pick a row from the softmax matrix.

What Problems are Handled?

- Cannot share strength among similar words
she bought a car she purchased a car she bought a bicycle she purchased a bicycle
\rightarrow solved, and similar contexts as well!
- Cannot condition on context with intervening words Dr. Jane Smith Dr. Gertrude Smith
\rightarrow solved! :
- Cannot handle long-distance dependencies for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer
\rightarrow not solved yet

Many Other Potential Designs!

- Neural networks allow design of arbitrarily complex functions!
- In future classes:
- Recurrent neural network LMs
- Transformer LMs

LM Problem Definition
Count-based LMs
Evaluating LMs

Log-linear LMs
Neural Net Basics
Feed-forward NN LMs

