CS11-711 Advanced NLP Language Modeling and Neural Networks

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/anlp2022/</u>

Are These Sentences OK?

- Jane went to the store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.
- The food truck went to Jane.

Engineering Solutions

- Jane went to the store.
- store to Jane went the.
- Jane went store.

Create a grammar of the language

- Jane goed to the store.
- The store went to Jane. }

{ Consider morphology and exceptions Semantic categories, preferences

• The food truck went to Jane. And their exceptions

Probabilistic Language Models

$$P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \dots, x_{i-1})$$

$$\sum_{i=1}^{I} \prod_{i=1}^{I} \prod_{i=1$$

The big problem: How do we predict

$$P(x_i \mid x_1, \dots, x_{i-1})$$
 ?!?!

What Can we Do w/ LMs?

• Score sentences:

Jane went to the store . → high store to Jane went the . → low (same as calculating loss for training)

• Generate sentences:

while didn't choose end-of-sentence symbol:
 calculate probability
 sample a new word from the probability distribution

Count-based Language Models

Review: Count-based Unigram Model

• Independence assumption: $P(x_i|x_1, \ldots, x_{i-1}) \approx P(x_i)$

Count-based maximum-likelihood estimation:

$$P_{\text{MLE}}(x_i) = \frac{c_{\text{train}}(x_i)}{\sum_{\tilde{x}} c_{\text{train}}(\tilde{x})}$$

Interpolation w/ UNK model:

 $P(x_i) = (1 - \lambda_{\text{unk}}) * P_{\text{MLE}}(x_i) + \lambda_{\text{unk}} * P_{\text{unk}}(x_i)$

Higher-order n-gram Models

• Limit context length to *n*, count, and divide $P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) := \frac{c(x_{i-n+1}, \dots, x_i)}{c(x_{i-n+1}, \dots, x_{i-1})}$

$$P(example | this is a) = \frac{c(this is an example)}{c(this is an)}$$

• Add smoothing, to deal with zero counts:

$$P(x_i \mid x_{i-n+1}, \dots, x_{i-1}) = \lambda P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) + (1 - \lambda) P(x_i \mid x_{1-n+2}, \dots, x_{i-1})$$

Smoothing Methods (e.g. Goodman 1998)

interpolation calculated by sum of discounts $\alpha = \sum_{\{\tilde{x}; c(x_{i-n+1}, \dots, \tilde{x}) > 0\}} d$

 Kneser-Ney: discounting w/ modification of the lower-order distribution

Goodman. An Empirical Study of Smoothing Techniques for Language Modeling. 1998.

Problems and Solutions?

 Cannot share strength among similar words she bought a car she bought a bicycle she purchased a car she purchased a bicycle

→ solution: class based language models

• Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

→ solution: skip-gram language models

Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

 \rightarrow solution: cache, trigger, topic, syntactic models, etc.

When to Use n-gram Models?

- Neural language models (next) achieve better performance, but
- n-gram models are extremely fast to estimate/apply
- n-gram models can be better at modeling lowfrequency phenomena
- Toolkit: kenlm

https://github.com/kpu/kenlm

LM Evaluation

Evaluation of LMs

- Log-likelihood:
- Per-word Log Likelihood: 1
 - $WLL(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} \log P(E)$

 $LL(\mathcal{E}_{test}) = \sum \log P(E)$

• Per-word (Cross) Entropy:

$$H(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} -\log_2 P(E)$$

• Perplexity:

$$ppl(\mathcal{E}_{test}) = 2^{H(\mathcal{E}_{test})} = e^{-WLL(\mathcal{E}_{test})}$$

Unknown Words

- Necessity for UNK words
 - We won't have all the words in the world in training data
 - Larger vocabularies require more memory and computation time
- Common ways:
 - Limit vocabulary by frequency threshold (usually UNK <= 1) or rank threshold
 - Model characters or subwords

Evaluation and Vocabulary

- **Important:** the vocabulary must be the same over models you compare
- Or more accurately, all models must be able to generate the test set (it's OK if they can generate *more* than the test set, but not less)
 - e.g. Comparing a character-based model to a word-based model is fair, but not vice-versa

An Alternative: Featurized Log-Linear Models (Rosenfeld 1996)

An Alternative: Featurized Models

- Calculate features of the context
- Based on the features, calculate probabilities
- Optimize feature weights using gradient descent, etc.

An Alternative: Featurized Models

• Calculate features of the context, calculate probabilities

- Feature weights optimized by SGD, etc.
- What are similarities/differences w/ BOW classifier?

Example:

Previous words: "giving a"

Reminder: Training Algorithm

 Calculate the gradient of the loss function with respect to the parameters

 $rac{\partial \mathcal{L}_{ ext{train}}(heta)}{\partial heta}$

- How? Use the chain rule / back-propagation.
 More in a second
- Update to move in a direction that decreases the loss

$$\theta \leftarrow \theta - \alpha \frac{\partial \mathcal{L}_{\text{train}}(\theta)}{\partial \theta}$$

What Problems are Handled?

• Cannot share strength among **similar words**

she bought a car she bought a bicycle she purchased a car she purchased a bicycle

→ not solved yet 😞

Cannot condition on context with **intervening words**

Dr. Jane Smith Dr. Gertrude Smith

→ solved! 😅

Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

Beyond Linear Models

Linear Models can't Learn Feature Combinations

students take tests \rightarrow high teachers take tests \rightarrow low students write tests \rightarrow low teachers write tests \rightarrow high

- These can't be expressed by linear features
- What can we do?
 - Remember combinations as features (individual scores for "students take", "teachers write")
 → Feature space explosion!
 - Neural networks!

"Neural" Nets

Original Motivation: Neurons in the Brain

Current Conception: Computation Graphs

Image credit: Wikipedia

expression:

 \mathbf{X}

graph:

A node is a {tensor, matrix, vector, scalar} value

An **edge** represents a function argument (and also an data dependency). They are just pointers to nodes.

A **node** with an incoming **edge** is a **function** of that edge's tail node.

A **node** knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}$.

expression: $\mathbf{x}^{\top} \mathbf{A}$

graph:

Functions can be nullary, unary, binary, ... *n*-ary. Often they are unary or binary.

expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$

graph:

Computation graphs are generally directed and acyclic

expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$

expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c$

expression:
$$y = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c$$

variable names are just labelings of nodes.

Algorithms (1)

- Graph construction
- Forward propagation
 - In topological order, compute the value of the node given its inputs

graph: $f(x_1, x_2, x_3) = \sum x_i$ $f(\mathbf{M}, \mathbf{v}) = \mathbf{M}\mathbf{v}$ $f(\mathbf{U},\mathbf{V}) = \mathbf{U}\mathbf{V}$ $f(\mathbf{u}, \mathbf{v}) \models \mathbf{u} \cdot \mathbf{v}$ $f(\mathbf{u}) = \underline{\mathbf{u}}^\top$ A b \mathcal{C} X

graph: $f(x_1, x_2, x_3) = \sum x_i$ $f(\mathbf{M}, \mathbf{v}) = \mathbf{M}\mathbf{v}$ $f(\mathbf{U},\mathbf{V}) = \mathbf{U}\mathbf{V}$ $f(\mathbf{u}, \mathbf{v}) \models \mathbf{u} \cdot \mathbf{v}$ $f(\mathbf{u}) = \underline{\mathbf{u}}^\top$ A b \mathcal{C} X

 $f(x_1, x_2, x_3) = \sum x_i$ $f(\mathbf{M}, \mathbf{v}) = \mathbf{M}\mathbf{v}$ $f(\mathbf{U}, \mathbf{V}) = \mathbf{U}\mathbf{V}$ $f(\mathbf{u}, \mathbf{v}) \models \mathbf{u} \cdot \mathbf{v}$ $f(\mathbf{u}) = \underline{\mathbf{u}}^\top$ A b \mathcal{C} X

graph:

graph:

Algorithms (2)

• Back-propagation:

- Process examples in reverse topological order
- Calculate the derivatives of the parameters with respect to the final value

• Parameter update:

Move the parameters in the direction of this derivative

W = a * dI/dW

Back Propagation

 $f(x_1, x_2, x_3) = \sum x_i$ $f(\mathbf{M}, \mathbf{v}) = \mathbf{M}\mathbf{v}$ $f(\mathbf{U},\mathbf{V}) = \mathbf{U}\mathbf{V}$ $f(\mathbf{u}, \mathbf{v}) \models \mathbf{u} \cdot \mathbf{v}$ $f(\mathbf{u}) = \underline{\mathbf{u}}^\top$ A b \mathcal{C} Х

graph:

Much more detail next class!

Back to Language Modeling

Feed-forward Neural Language Models

• (See Bengio et al. 2003)

Example of Combination Features

- Word embeddings capture features of words
 - e.g. feature 1 indicates verbs, feature 2 indicates determiners
- A row in the weight matrix (together with the bias) can capture particular *combinations* of these features
 - e.g. the 34th row in the weight matrix looks at feature 1 in the second-to-previous word, and feature 2 in the previous word

Where is Strength Shared?

Tying Input/Output Embeddings

What Problems are Handled?

• Cannot share strength among **similar words**

she bought a car she bought a bicycle she purchased a car she purchased a bicycle

→ solved, and similar contexts as well! ⇒

• Cannot condition on context with **intervening words**

Dr. Jane Smith Dr. Gertrude Smith

Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

Many Other Potential Designs!

- Neural networks allow design of arbitrarily complex functions!
- In future classes:
 - Recurrent neural network LMs
 - Transformer LMs

LM Problem Definition Count-based LMs Evaluating LMs Log-linear LMs Neural Net Basics Feed-forward NN LMs

Questions?