11 Symbolic MT 1: The IBM Models and EM Algorithm

Up until now, we have seen Section 3 discuss n-gram models that count up the frequencies
of events, then Section 4 move to a model that used feature weights to express probabilities.
Section 5 to Section 8 introduced models with increasingly complex structures that still fit
within the general framework of Section 4: they calculate features and a softmax over the
output vocabulary and are trained by stochastic gradient descent, instead of counting. In
the following chapter, we will move back to models similar to the n-gram models that rely
more heavily on counting and symbolic models, which treat things to translate as discrete
symbols, as opposed to the continuous vectors used in neural networks.

11.1 Contrasting Neural and Symbolic Models

Like all of the models discussed so far, the models we’ll discuss in this chapter are based on
predicting the probability of an output sentence E given an input sentence F', P(E | F).
However, these models, which we will call symbolic models, take a very different approach,
with a number of differences that I’ll discuss in turn.

Method of Representation: The first difference between neural and symbolic models
is the method of representing information. Neural models represent information as low-
dimensional continuous-space vectors of features, which are in turn used to predict probabil-
ities. In contrast, symbolic models — including n-grams from Section 3 and the models in
this chapter — express information by explicitly remembering information about single words
(discrete symbols, hence the name) and the correspondences between them. For example,
an n-gram model might remember that “given a particular previous word e;_1, what is the
probability of the next word e;”. As a result, well-trained neural models often have superior
generalization capability due to their ability to learn generalized features, while well-trained
symbolic models are often better at remembering information from low-frequency training
instances that have not appeared many times in the training data. Section 19 will cover a few
models that take advantage of this fact by combining models that use both representations
together.

Noisy-channel Representation: Another large difference is that instead of directly
using the conditional probability P(E | F') they use a noisy-channel model and model
translation by dividing translation up into a separate translation model and language
model. Specifically, remembering that our goal is to find a sentence that maximizes the
translation probability:

E = argmax P(E | F), (94)
E
we can use Bayes’s rule to convert to the following
- P(F|E)P(E
E = argr}?ax (P(F)’)()’ (95)

then ignore the probability P(F) because F is given and thus will be constant regardless of
the £ we choose.

E = argrgax P(F | E)P(E). (96)

We perform this decomposition for two reasons. First, it allows us to separate the models
for P(F' | F) and P(FE), allowing us to create models of P(F' | F) that make certain simplifying
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assumptions to make models easier (explained in a bit). The neural network models that we’ve
explained before do not make these simplifying assumptions, thus sidestepping this issue.
Second, it allows us to train the two models on different resources: P(F' | E) must be trained
on bilingual data, which is relatively scarce, but P(F) can be trained on monolingual data,
which is available in large quantities. Because standard neural machine translation systems
do not take this noisy channel approach, they are unable to directly use monolingual data,
although there have been methods proposed to incorporate language models [8], train NMT
systems by automatically translating target language data into the source language and using
this as pseudo-parallel data to train the model [15], or even re-formulating neural models to
follow the noisy channel framework [18].

Latent Derivations: A second difference from the models in previous sections is that
these symbolic models are driven by a latent derivation D that describes the process by
which the translation was created. Because we don’t know which D is the correct one, we
calculate the probability P(E | F)) or P(F | E) by summing over these latent derivations as
follows:

P(E|F)=) P(E,D|F). (97)
D
It is also common to approximate this value by using the derivation with the maximum
probability
P(E|F)=maxDP(E,D | F). (98)

The neural network models also had variables that one might think of as part of a deriva-
tion: the word embeddings, hidden layer states, and attention vectors. The important dis-
tinction between these variables and the ones in the model above is whether they have a
probabilistic interpretation (i.e. whether they are random variables or not). In the cases
mentioned above, the hidden variables in neural networks do not have any probabilistic in-
terpretation — given the input, the hidden variables are simply calculated deterministically,
so we do not have any concept of the probability of the hidden state h given the input «,
P(h | ). This probabilistic interpretation can be useful if we, for example, express interest in
the latent representations (e.g. word alignments) and would like to calculate the probability
of obtaining particular latent representations.?!

11.2 IBM Model 1

Because this is all a bit abstract, let’s go to a concrete example: IBM Model 1 [3], an
example of which is shown in Figure 31. Model 1 is a model for P(F' | E), and is extremely
simple (in fact, over-simplified), in that it assumes that we first pick the number of words in
the source |F|, then independently calculate the probability of each word in F'. By doing so,
we can assume that the probability takes the following form:

|7
P(F | E)=P(F||E)[[ P(f; | E). (99)

j=1
Because |F| is the length of the source sentence, which we already know, Model 1 does not
make much effort to estimate this length, setting the probability to a constant: P(|F| | E) = e.

31While not a feature of vanilla neural networks, there are ways to think about neural networks in a proba-
bilistic framework, which we’ll discuss a bit more in Section 16.
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F=me-r1 wa ke-ki wo tabeta

E=mary ate a cake NULL

Figure 31: An example of the variables in IBM model 1.

More important is the estimation of the probability P(f; | ). This is done by assuming that
fj was generated by the following two-step process:

1. Randomly select an alignment a; for word f;. The value of the alignment variable is
an integer 1 < a; < |E| + 1 corresponding to the word in E to which f; corresponds.
€|g|+1 1s a special NULL symbol, which is used as a catch-all token that can generate
words that do not explicitly correspond to any other words in the source sentence. We
assume that the alignment is generated according to a uniform distribution:

Pla; | E) = 1/(|E| + 1. (100)

2. Based on this alignment, calculate the probability of f; according to P(f; | eq;). This
probability is a model parameter, which we learn using an algorithm described in the
next section.

Putting these two probabilities together, we now have the following probability for the
alignments and source sentence given the target sentence:

||
P(F,A| E) = P(|[F| | E)[[ P(f; | ea;) Pla; | E), (101)
j=1
L
= 6]-1_[1 Wp(fj | €q,)- (102)
|F|
- (‘E‘jl)Fjl;[lP(fj | €a,)- (103)

It should be noted that alignment A is one example of the derivation D described in the
previous section. As such, according to Equation 97, we can also calculate the probability
P(E | F) by summing over the possible alignments A:

|F|
P(F | E) - A P(f | ea]’)a (104)
2 are e L7
|E|+1|E|+1 |E|+1 ||
alz:l azz:l a|z|:1 ‘E|+1 \F\pr]‘eaﬂ) (105)
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By noting that each sum over a variable a; only affects a single element of the product on
the right side of the equation, we can simplify to:

|F| |E|+1

P(F’E) ‘E‘+1|F|H Z f]‘eay (106)

j=1a;=1

Because this formula consists of a single product over |F| elements and sum over |E| + 1
elements, it can be calculated efficiently in O(|F||E|) time.

Now that we have our model specified, we have two remaining questions to answer: the
learning problem of finding the parameters specifying P(f; | eq,), covered in Section 11.3,
and the search problems of finding a translation E that maximizes the probability P(FE | F)
or finding an alignment A that maximizes P(A | F, E), which will be covered at the end of
the chapter in Section 11.6.

11.3 The EM Algorithm

A general purpose learning algorithm for probabilistic models such as Model 1 is the expectation-
maximization algorithm (EM algorithm; [4]). Put simply, EM is an iterative process that
works by repeating two steps:

E Step: Based on the current model parameters, calculate the expectations of counts regard-
ing latent variables D.

M Step: Based on these counts, update the model parameters.

This section will give an overall intuition of the EM algorithm using Model 1 as an example,
and readers interested in the theory behind the algorithm can reference other materials, such
as [1].

M Step: First, let’s define a parameter 6y ., which specifies P(f|e; #) in the current model.
If we know how many times source word f aligned to target word e, cf ., and how many times
target word e appeared in the corpus c., we can calculate this parameter using maximum
likelihood estimation, as we did in Section 3:

Ofe = cre/ce. (107)

This simple process is the M step of the EM algorithm.

E Step: So now the question becomes how we calculate the counts, which is the job of
the E step. Calculating c. is easy, we just count up the number of times a particular word
appears in the corpus and we’re done. Calculating cy . is slightly more involved however, as
it requires us to know the values of the latent alignments A, which are not given to us in our
training data. In order to overcome this problem, we calculate the expectation of each value
in A, P(A | F, E) and use this to estimate the counts.

Because Model 1 decomposes nicely, the probabilities of each value a; are independent,
and thus, we can consider the probability of a single alignment P(a; = t|f;, ) and further
expand this using Bayes’s rule:

P(fjla; =t, E)P(a; = t|E)
P(aj =t|f;, E) P(f;|E)
P(fjlaj =t, E)P(a; = t|E)

S p(fla; = £, B)Pla; = 1|E)

(108)

(109)

76



and take advantage of the fact that P(a; = t|F) is constant to cancel out
P(fila; =t FE
P(aj = t|f;, E) = IEH(lfJ'“] E) (110)
Zle P(f]|a] = t7E)

So basically, we can calculate a probability for a; by normalizing the translation probabilities
for each word in |E| by the sum over the entire sentence.

Once we have this alignment probability, we can then calculate the counts for the entire
training corpus (F, ) as follows:

|F| |Bl+1
cre= Y. .Y 6fi=fe=eP(a=t|FE), (111)

(F.EYe(F,£) j=1 t=1

where §(f; = f,e; = e) is the Kronecker delta function:

1 if fj=fande =e

. (112)
0 otherwise.

5(f] :fuet:e) = {
Describing this in a more procedural way, similar to how this would actually be imple-
mented in code, this means that for every iteration through the data we:

1. Initialize all counts c. ; to zero.
2. For every word f; in every sentence pair (F, E)

(a) Calculate the probability P(a; = t|F, E) for every t.
(b) Increment cy, ., by P(a; = t|F, E) for every t.

One thing to note is that this training algorithm also gives us a simple way to calculate
one-best alignments A that maximize P(A | F,E). In order to do so, we simply inspect
the probabilities P(a; = t|F, E) that we calculated for each word j, and output the ¢ that
maximizes the probability.

11.4 IBM Model 2 and the HMM Model

As mentioned in the previous section, IBM Model 1 has a very simplified view of the world,
where each word in the sentence is translated independently without any regard for word
order. In this section, we introduce two models that consider word order.

The first model, IBM Model 2 is based on the simple intuition that the reordering
between sentences F' and E essentially has a canonical word order. For example, if we are
translating between French and English, because the word order in these two languages is
quite similar, we could assume that aligned words will occur in roughly the same position in
sentences in both languages. In equations, this boils down to saying:

Of course, while this trend is true for many language pairs32, for other language pairs with
larger differences in word order this will not hold, and thus we prefer a model that can learn

32[6] use a model reflecting this rule with great effect.
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the trends that each particular language follows from data. In order to do so, we replace the
simple alignment model of Equation 100 with a more sophisticated one learned directly from
data:

Plaj =t|j,|F|,|E|) = ¢4 F| |8/ F| Bl (114)

The estimation of the counts for ¢; ;| p| || can be done in the E step of the EM algorithm in
a manner very similar to the estimation of ¢y, allowing Model 2 to consider word order with
minimal modifications to the training method for Model 1.33

A second, slightly more complicated model for considering word order is the hidden
Markov model (HMM; [17]) alignment model. In contrast to Model 2, which was based on
the idea of canonical word order for sentences of particular lengths, HMM alignment is based
on the intuition that the position of the next a; will tend to depend on the previous a;_1. In
other words, we calculate the probability

P(aj =1 aj—1 =5, ||, |E) = Ct,s,|F|,\E|/Cs,|F|,|E\- (115)

which can be similarly calculated using the EM algorithm.

However, in the case of the HMM, calculating expectations becomes a little bit more
complicated. Because probabilities of each timestep j now depend on the alignments in the
previous time step j — 1, we can no longer use the independence assumptions that made
Model 1 and Model 2 easy to calculate. Fortunately, however, it is possible to use a dynamic
programming algorithm called the forward-backward algorithm that allows us to exactly
calculate the expectations of alignments for the entire sentence. Similarly, we can calculate
one-best alignments using the Viterbi algorithm, which we will cover in more detail in
Section 12. Interested readers can find more details in [17].

11.5 IBM Models 3-5

IBM Models 3-5 gradually introduce more complexity into the modeling process for P(F, A|E).
Covering these in detail is beyond the scope of these materials, but because the IBM models
are still used to obtain word alignments it is worth mentioning the basic ideas of these three
models:

Model 3 introduces two concepts fertility and distortion. Fertility essentially models
“given a particular word e;, how many words in F' is it likely to generate?” Many
words in F will only have a single counterpart in F', leading their fertility to be 1.
However, some words in £ may lead to multiple words in F' (e.g. “cats” in English will
often be translated into “les chats” in French, leading to a fertility of 2). The distortion
probability of Model 3 is similar to the alignment probability of Model 2, but estimated
in the reverse direction, estimating j given ¢ instead of ¢ given j.

Model 4 modifies the distortion probability of Model 3 to handle relative distortion proba-
bilities, conditioning the selection of the next word based on whether the previous word
appeared. This is very similar in motivation to the HMM model.

Model 5 notes that Model 4 is deficient, assigning some probability mass to illegal configu-
rations of the various variables (for example, translations where j is less than 1 or more

33 Question: What do the equations look like for this?
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Figure 32: An example of (a) a many-to-many alignment where F' is Japanese and E is English,
(b) the alignments for an IBM model run in the P(E|F") direction, and (c) alignments in the
P(F|FE) direction.

than |F'|). Model 5 fixes this, ensuring that all of the probability mass is assigned to
legal configurations.

One thing to note about IBM Models 3-5 is that there no longer exist efficient exact training
algorithms like the ones that we used for IBM Models 1 and 2, or the forward-backward
algorithm for the HMM model. As a result, it is necessary to perform inexact inference using
a number of tricks: models are implemented by greedily finding a reasonably good hypothesis,
performing hill-climbing towards better hypotheses, and optimizing parameters based on the
probabilities of hypotheses found during incomplete exploration of the space. The details of
training these models are quite involved, interested readers can find details in the original

paper, [3].

11.6 Synchronization and Evaluation of Alignments

One problem with the IBM and HMM Models is that they can only handle one-to-many
alignments. We call these one-to-many because there is each word f; corresponds to only
a single word e;, while in the opposite direction e; may correspond to multiple words in F'
As a result, if we look at a sentence such as the one in Figure 32, where we need to have
many-to-one alignments in both directions, standard IBM models run in either direction are
not able to obtain proper alignments. In order to solve this problem, it is common to run
the IBM models in both directions P(E|F') and P(F|E), then perform synchronization the
alignments according to heuristics such as the following [10]:

Intersection: Only use alignments discovered by both P(E|F') and P(F|E) models.

Union: Use alignments discovered by either or P(E|F) or P(F|E). In the example in Fig-
ure 32, this will result in the correct alignment.

Grow, Diag, Final, And: A variety of other heuristics that strike a middle ground between
Intersection and Union were proposed by [10].
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Once we have word alignments, we may want to assess how good they are. The most
standard measure for doing so is alignment error rate (AER; [13]). Alignment error rate
is measured by having a human annotator annotate “sure” and “possible” alignments, where
sure alignments are words that are certainly aligned (such as two nouns that are exact trans-
lations of each-other), and possible alignments represent more difficult cases (such as phrasal
alignments where a chunk of words are aligned, but it is not easy to tell exactly which words
correspond to each-other).

11.7 Further Reading

Because alignment models play an instrumental role in symbolic translation models, there
have been a number of improvements made over them.

Better generalization for alignment probabilities: One of the weak points of symbolic
models is their lack of generalization. Specifically in the IBM models, the probabilities
P(f|e) for rare words are often not estimated properly, leading to mistaken alignments.
There are a number of ways proposed to improve this, including the use of word classes
[13] or neural-network based representations [16].

Constraints on alignment: It is also possible to put constraints on the alignments to
encourage intuitive solutions and penalize unintuitive solutions. This has been done
through encouraging models to discover similar alignments in both directions [11], or
by adding soft constraints to solutions that encourage most words to have reasonable
fertility values through posterior regularization [7].

Syntactic alignment: If syntactic trees are available on either side of the language pair, it
is possible to learn alignments that are faithful to this syntactic structure [5].

Supervised alignment: Also, if hand-made alignments are available, the model can be
trained to be faithful to these alignments [9, 14].

Phrasal alignment: Finally, it is possible to devise models that directly obtain many-to-
many alignments without relying on the synchronization [2, 12].

11.8 Exercise

The exercise in this section will be to implement the training procedure for IBM Model 1.
This will involve:

e Reading in the parallel corpus.
e Creating training code using the EM algorithm.

e Checking the log likelihood (Equation 106) to make sure that it is increasing at every
iteration.

e Printing out the model parameters 0., and visualizing the alignments obtained by the
decoding algorithm of Section 11.6.

Potential improvements include:
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e Implementing one of the more advanced IBM Models.
e Implementing synchronization heuristics.

e Measuring alignment accuracy on an annotated dataset.3*
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