13 Symbolic MT 3: Phrase-based MT

The previous two sections introduced word-by-word models of translation, how to learn them,
and how to perform search with them. In this section, we’ll discuss expansions of this method
to phrase-based machine translation (PBMT; [7]), which uses “phrases” of multiple sym-
bols, which have allowed for highly effective models in a number of sequence-to-sequence tasks.

13.1 Advantages of Memorizing Multi-symbol Phrases

Comi un melocotén , una naranja y una manzana roja

\ [/ / ] 1|

| ate a peach , an orange , and a red apple

X=X

Translations with Multi-word  Local reorderings
different numbers  dependencies
of words

Figure 40: An example of a translation with phrases.

The basic idea behind PBMT is that we have a model that memorizes multi-symbol strings,
and translates this string as a single segment. An example of what this would look like for
Spanish-to-English translation is shown in the upper part of Figure 40, where each phrase in
the source and target languages is underlined and connected by a line. From this example,
we can observe a number of situations in which translation of phrases is useful:

Consistent Translation of Multiple Symbols: The first advantage of a phrase-based
model is that it can memorize coherent units to ensure that all relevant words get translated
in a consistent fashion. For example, the determiners “un” and “una” in Spanish can both
be translated into either “an” or “a” in English. If these are translated separately from their
accompanying noun, there is a good chance that the language model will help us choose the
right one, but there is still significant room for error.?” However, if we have phrases that “un
melocotén” is almost always translated into “a peach” and “una naranja” is almost always
translated into “an orange”, these sorts of mistakes will be much less likely.

This is particularly true when translating technical phrases or proper names. For example,
“Ensayo de un Crimen” is a title of a Mexican movie that translates literally into something
like “an attempted crime”. It is only if we essentially memorize this multi-word unit that we
will be able to generate its true title, “The Criminal Life of Archibaldo de la Cruz”.

Handling of Many-to-One Translations: Phrase-based models are also useful when
handling translations where multiple words are translated into a single one or vice-versa. For
example, in the example the single word “comid” is translated into “I ate”. While word-based
models have methods for generating words such as “I” from thin air, it is generally safer to
remember this as a chunk and generate multiple words together from a single word, which is
something that phrase-based models can do naturally.

37For example, the choice of “a” or “an” is not only affected by the probability of the following word

P(e; | es—1 = “a/an’), which will be affected by whether e; is a particular type of noun, but also the language
model probability of “a” or “an” given the previous word P(e; = “a/an” | e;—1), which might randomly favor
one or the other based on quirks in the statistics of the training corpus.
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Handling of Local Re-ordering Finally, in addition to getting the translations of words
correct, it is necessary to ensure that they get translated in the proper order. Phrase-based
models also have some capacity for short-distance re-ordering built directly into the model
by memorizing chunks that contain reordered words. For example, in the phrase translating
“una manzana roja” to “a red apple”, the order of “manazana/apple” and “roja/red” is
reversed in the two languages. While this reordering between words can be modeled using an
explicit reordering model (as described in Section 13.4), this can also be complicated and error
prone. Thus, memorizing common reordered phrases can often be an effective for short-length
reordering phenomena.

13.2 A Monotonic Phrase-based Translation Model

So now that it’s clear that we would like to be modeling multi-word phrases, how do we
express this in a formalized framework? First, we’ll tackle the simpler case where there is no
explicit reordering, which is also called the case of monotonic transductions.

In the previous section, we discussed an extremely simple monotonic model that modeled
the noisy-channel translation model probability P(F' | F) in a word-to-word fashion as follows:

|E|

P(F|E)=]]P(fi e (126)
t=1

To extend this model, we will first define F' = fi,.. .,f|p| and F = ey, ... €| R which are
sequences of phrases. In the above example, this would mean that:

= {“comi”, “un melocotén”, ..., “una manzana roja” } (127)

{“i ate”, “a peach”, ..., “a red apple”}. (128)

F
E

Given these equations, we would like to re-define our probability model P(F' | E) with
respect to these phrases. To do so, assume sequential process where we first translate tar-
get words E into target phrases E, then translate target phrases E into source phrases F,
then translate source phrases F into target words F. Assuming that all of these steps are
independent, this can be expressed in the following equations:

P(F,F,E | E)=P(F | F)P(F | E)P(E | E). (129)

Starting from the easiest sub-model first, P(F | F) is trivial. This probability will be one
whenever, the words in all the phrases of F' can be concatenated together to form F', and zero
otherwise. To express this formally, we define the following function

F = concat(F). (130)

The probability P(E | E), on the other hand is slightly less trivial. While & = concat(E)

must hold, there are multiple possible segmentations E for any particular F, and thus this

probability is not one. There are a number of ways of estimating this probability, the most
common being either a constant probability for all segmentations:

P(E|E)=—, (131)

N~
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or a probability proportional to the number of phrases in the translation

B ’ E‘ Aphrase-penalty
PE|E)=——+—— (132)
Z

Here Z is a normalization constant that ensures that the probability sums to one over all
the possible segmentations. The latter method has a parameter Aphrase-penalty, Which has the
intuitive effect of controlling whether we attempt to use fewer longer phrases Aphrase-penalty < 0
or more shorter phrases Aphrase-penalty > 0. This penalty is often tuned as a parameter of the
model, as explained in detail in Section 13.6.

Finally, the phrase translation model P(F | E) can is calculated in a way very similar
to the word-based model, assuming that each phrase is independent:

|E|
P(F|E)=]]P(fi | e). (133)

t=1

This is conceptually simple, but it is necessary to be able to estimate the phrase translation
probabilities P(f; | €;) from data. We will describe thiss process in Section 13.3.
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Figure 41: An example of an WFST for a phrase-based translation model. —log P_n is an
abbreviation for the negative log probability of the nth phrase, i.e., —logP_1 is equal to
P(f = “comi” | € = “i ate”).

y:<eps>

<eps>:,

<eps>:<eps>/-log P_5

But first, a quick note on how we would express a phrase-based translation model as
a WFST. One of the nice things about the WFST framework is that this is actually quite
simple; we simply create a path through the WFST that:

1. First reads in source words one at a time.
2. Then prints out the target words one at a time.
3. Finally, adds the log probability.

An example of this (using the phrases from Figure 40) is shown in Figure 41. This model
can be essentially plugged in instead of the word-based translation model used in Section 12.
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13.3 Phrase Extraction and Scoring

So now we have a translation model, how do we extract phrases from data and calculate their
translation scores? Basically, the intuition behind the method is that we want to extract
phrases that are consistent with word alignments, such as those obtained by the IBM models
introduced in Section 11.

a
p . t una manzana roja —
a rp comi — ate ared apple
i é a 3 é a- una comi una manzana roja
manzana — apple ate ared apple
comi ‘ ] roja — red comi — iate
una ] comiuna - atea Comiuna  iatea
manzana roja —»  COMi Una manzana roja -
manzana E red apple i ate a red apple
roja ]

Figure 42: Phrase extraction from aligned data. Phrases of various lengths (1: red, 2: blue, 3:
yellow, 4: purple) are extracted. Phrases containing the null-aligned word “i” are extracted
by appending it to neighboring phrases (green).

An example of such alignments, and the phrases extracted from them, are shown in Fig-
ure 42. In the example, we can note a few things. First, phrases of various lengths are
extracted, from short phrases containing word-to-word alignments, and long phrases con-
taining an entire sentence.?® This is important because it allows the translation system to
remember and use longer phrases to improve its modeling accuracy, but also makes it possible
to fall back to shorter phrases when necessary to maintain coverage. Phrases that contain
words that are not aligned to any word in the counterpart language (null-aligned words;
“” in this example) are also included in phrases by connecting them to other phrases. This
allows phrase-based models to generate these words in many-to-one translations, which is one
of the advantages of phrase-based models mentioned above.

As a more formal definition of the phrases that we extract, if we have 32 containing the

i1th through ioth words of F, and fjf containing the jjth through joth words of F', this will
be extracted as a phrases if and only if:

e There is at least one alignment link between the words in these phrases.

£

,+1, and similarly no

. . . ; i1—1
e The are no alignment links between words in ezf and f{'" or f]|-

' ' 4 . B
alignment links between f]jf and e Lor eLQL.

The first restriction is to ensure that we don’t “hallucinate” phrases that contain no aligned
words. The second restriction is to ensure that we don’t include phrases that have only part
of the necessary content. An example of this would be fi < egl (“una manzana roja < a
red”), which violates this restriction because f3 (“manzana”), which is included, is aligned to
eq (“apple”), which is not included.

3%In interest of saving memory, it is common to limit the length of phrases to some number such as 5 or 7,
although there are methods around this limitation using efficient memory structures such as suffix trees [8].
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A precise and efficient algorithm to extract these phrases (introduced in Figure 5.1 of [9])
is shown in Algorithm 6. Here, in Lines 2-3, we loop over all substrings in E. In Line 4,
we declare a value TP (“target phrase”) which contains all positions in F' that correspond to
this substring eﬁf. In Line 5, we check if these values are quasi-consecutive, which means that
all the indices in the set are consecutive, with the exception of indices that are not aligned
to any word in E. In Line 6-7, we calculate the span j; to j2 in F'. In Line 8 we calculate
all positions in E that correspond to fjf, and in Line 9 we confirm that these indices indeed
fall between i; and 3. Line 10 adds this phrase to the set of extracted phrase. The loop in
Lines 11-18, and inner loop in Lines 13-16 respectively expand the source phrase f]]f on the
left side and right side, adding unaligned words.

Algorithm 6 The phrase extraction algorithm. Here A(i,j) indicates that e; is aligned to
i

1. procedure PHRASEEXTRACT(E = e‘1E|, F= f{F|, A)

2 for i) from 1 to |F| do

3 for iy from i; to |E| do

4 TP :={j|3:i1 <i<iysAA(i,j)}

5 if quasi-consecutive(T'P) then

6: J1 =min TP

7 jo =max TP

8 SP:={i|3:51<j<jaNA(®F)}
9: if SPC{il,i1+1,...,i2} then

10: BP:=BPU{(e?, f

11: while j; > 0AVi: A(i,71) =0 do
12: 3" = ja

13: while ;' < JAVi: A(i,j') =0 do
14: BP:=BPU{(e?, f}}
15: J=7+1

16: end while

17: Jj1:=71—1

18: end while

19: end if

20: end if

21: end for

22: end forreturn BP

23: end procedure

This algorithm will extract many instances of phrases, resulting in a count ¢(f,e) of the
number of times a particular phrase has been extracted. From these counts, we can directly
calculate phrase translation probabilities P(f | e) that are used in Equation 133.

13.4 Phrase-based Translation with Reordering

It should be noted that the method described so far does not have any capacity for reordering
of the phrases themselves. For many tasks, this reordering is not necessary, and even for tasks
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where reordering is essential such as M'T, it is possible to handle local word reorderings to some
extent by memorizing local reorderings as parts of phrases (as mentioned in Section 13.1). In
language pairs (such as English-Spanish, as noted by [1]), just handling this local reordering
can get us pretty far.

{ kare wa momo to akai ringo wo tabeta

[ A~

he ate a peach and a red apple

Figure 43: An example of a phrase-based translation with inter-phrase reordering (for the
phrase “wo tabeta/ate”.

But for other language pairs with more disparate word order (e.g. German-English or
Japanese-English) this is not sufficient. Thus, we would like to create a model that allows
for examples that perform reordering of the phrases themselves, such as the Japanese-English
example shown in Figure 43. In this example, we need to move the verb phrase “wo tabeta”
at the end of the Japanese sentence to “ate” near the beginning of the English sentence.

The basic idea of how we do this reordering is by relaxing the order with which we process
the source phrases. We still generate the target sentence E in order, but do not necessarily
translate the phrases in F' sequentially, instead translating them in arbitrary order. This indi-
cates that, like the IBM Models, we will have to have some concept of an “alignment” between
phrases indicating which phrase translates into which. Thus, we re-structure Equation 133
as follows: .

|E|
P(F | E) Hp fa,) | €P @@ | ai™). (134)

This indicates that we first select which phrase to translate next a;, then calculate the prob-
ability of its translation.

The probability P(a; | ai™') is called the reordering model. The calculation of the
reordering model is an area of active research, and there are quite a number of different
methods [3, 4]. Of the various methods, the lexicalized reordering model of [11] is perhaps
the most popular. The basic idea of this model is that based on the identity of the previous
phrase (f;_1,€a,_,), we want to estimate whether the reordering satisfies one of the following
patterns:

Monotonic: No reordering occurs: a;—1 + 1 = ay.
Swap: A short-distance reordering that swaps the two phrases occurs: a;—1 — 1 = a;.
Discontinuous: Some other variety of reordering.

These probabilities are generally estimated directly from data using maximum likelihood
estimation. It should also be noted that we also need to keep track of the coverage of
the phrases, so we will not select the same alignment twice in a single sentence, and thus
P(a; = 1) = 0 if ¢ has already been already used in a previous time step.
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13.5 Search in Phrase-based Translation Models

kare wa momo to akai ringo wo tabeta

C,= [0] [o] [o] [o][o] [o] (0] [0]
E, =

C,= 0] [o][o] [o] [o] [o]
E,= he

C,= o] [o][o] [o]
E,= heate

C, = o/ [o] [o]
E,= he ate a peach

C,= H o o
E,= he ate a peach and

Cs=
E, = he ate a peach and a red apple

Figure 44: An example of the generation process for phrase-based MT.

Now that we have a model that can handle reordering, we need to have an algorithm to
generate translations. The generation process for the previous example is shown in Figure 44.
Here, at each time step we have the target sentence at that point E; = concat(e}), and a
coverage vector, which is a binary vector C; the same length as the source sentence, indicating
which source words have been covered already by a phrase that we’ve used so far.

This example is for a single translation E (and derivation D, expressing the phrases
segmentation and alignment), but when actually generating translations it is necessary to be
able to search over the space of all possible derivations. As we’ve seen in the previous sections,
it is possible to perform search if we can create a WEST model that allows for this reordering.
Unfortunately, it is not easy to create a general-purpose WFST that will do this reordering
for all sentences.

What we do instead is create a per-sentence expansion of all of the phrases as a search
graph, which represents a WEFST while not being strictly similar, similar to the search graph
for neural MT systems shown in Section 7. An abbreviated example of such a search graph
is shown in Figure 45. Each node represents a coverage vector, and each edge between nodes
represents the translation of a particular phrase. The score of these edges would be the sum
of the negative log phrase translation and reordering probabilities from Equation 134. Like
the word-based models in the previous section, this model can be composed with a WFST
representing a language model, allowing for the full calculation of the conditional probability

It should be noted that this search graph is extremely large. Even if we only consider
one-word phrases, and each word only has a single translation, just considering all the permu-
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Input: kare wa momo to akai ringo wo tabeta

11000000

momo/a peach
11100000

momo/

peach wo tabeta/

ate
00100000

momo/
a peach

00010000

kare wa/he

00000000

to/and kare wa/he

akai ringo/

00000011
ared apple

wo tabeta/ate

Figure 45: An example of a search graph for phrase-based translation with reordering. For
brevity weights are omitted from the edges, but these weight will be equal to —log P(f|e) for
all phrase pairs.

tations alone will result in an exponential number of combinations. In fact, it can be shown
that translation with reordering in a word-based model with a 2-gram language model is an
NP-hard problem [5], and thus we cannot reasonably expect to solve it exactly.”

As a result, we must resort to approximate search methods, such as the beam search that
we used with neural MT models in subsubsection 7.2.2. The algorithm for phrase-based MT is
basically the same as that used in neural MT, we step through the translation word-by-word,
expand all our hypotheses, and keep only the best k. However, there is one slight complication:
in phrase-based translation, there will be some phrases that consume a single word, and some
phrases that consume multiple words, which means that even after we have expanded a single
phrase, some of the hypotheses will be further along in their path towards the end of the
sentence in Figure 45. To ensure that hypotheses that have progressed a similar amount
are compared fairly, we use a multi-stack search algorithm, which maintains different
“stacks” based on the number of covered words in the current partial hypothesis [12], and
only compares the scores of hypotheses within each of these stacks when deciding which
hypothesis to expand next.

13.6 A Log-linear Formulation for Translation

Finally, we will touch briefly upon an important extension that is widely used in symbolic
translation models (among many other models in NLP): log-linear models [10]. To grasp
the basic idea behind the log-linear models, first consider that in the following formulation
we have four different models that participate in our translation: the language model P(E),

39 Although with some tricks, it is possible to perform exact decoding for many, but not all sentences [2].
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the phrase segmentation model P(E | E), the reordering model P(A | E),%° and the phrase
translation model P(F | A, E). Normally these are multilpied together as

P(F,D,E)=P(F| A,E)P(A| E)P(E | E)P(E). (135)
Equivalently, we can add together the log probabilities:
log P(F,D,E) =1log P(F | A,E) +log P(A | E) +log P(E | E) + log P(E). (136)

The basic idea behind log-linear models is that we would like to generalize this equation
by adding weights X to each of these log-probabilities as follows:*!

log P(F,D,E) < A\rmlog P(F | A, E) 4+ Armlog P(A | E) + Asm log P(E | E) + Ay log P(E).

(137)
This allows us to modify the translation probability, giving relatively more weight to some of
the component models.

The motivation for this is two-fold. First, we would like to compensate for imperfections
in modeling. While Equation 136 is exact, we have no guarantee that we will be able to
accurately create each of these four component models and all models will all make modeling
errors, some more egregious than others. By adding weights, we can decide which models we
would like to trust more, and which models we would like to put less weight on, potentially
increasing modeling accuracy.

The second motivation is that this formulation actually allows us to add additional feature
functions that would not fit into the framework easily if we had to deal strictly with conditional
probabilities that we could multiply together sequentially like we have been doing previously.
In fact, we can now generalize our equation to the following:

log P(F,D,E) < Y _X\iéi(F,D,E), (138)

where ¢;(+) is a feature function calculating some salient piece of information regarding the
source and target sentences and the derivation. These features can, of course, include the
log probabilities in Equation 137, but this framework also frees us to add additional feature
functions that may be useful. For example, it is common to add:

Word Penalty: A feature ¢pwp(E) = |E|, which calculates the length of the target sentence.
If Awp > 0, then the model will prefer longer sentences, and if Awp < 0 the model will
prefer shorter sentences.

Direct Translation Model: A feature that calculates not P(f,, | &) for every phrase, but
P(&; | f.,). Considering the probabilities in both directions helps particularly in cases
where é; is relatively rare, and thus its conditional probability has been estimated from
an insufficient amount of data.

40Tn actuality, parts of A may rely on previously selected phrases in F, but for simplicity here we ignore this
fact.

4IThe symbol o« means “is proportional to”. In the case of log-linear models we would need to re-normalize
the value to get an actual probability distribution that sums to 1. However if our only purpose is to find the
translation hypothesis with the best probability, we don’t need to worry about this normalization term.
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Lexical Translation Model: Features, in both directions, that calculate the probability of
phrases by the probabilities of their component words [6]. This can be helpful for longer
phrases that themselves are rare and thus do not have well-estimated probabilities, but
are composed of words whose probabilities are easier to estimate.

Now, the only question is how we calculate the weights A. One simple way to do so is using
grid search, trying a bunch of values in a systematic fashion and seeing which one makes
it possible to achieve the best translation accuracy. Of course, there are more sophisticated
methods as well, which we will cover in detail in Section 16.

13.7 Exercise

In the exercise this time we will convert our monotonic word-based translation model from
the previous section to a phrase-based model. This will entail two improvements:

e Implement the phrase extraction algorithm in Algorithm 6, and run it over the word
alignments obtained by your word alignment code from the exercise in Section 11.

e Implement code to convert this into a WFST.

The remainder will be very similar to what you did for the word-based models.

One possible improvement includes implementing a log-linear model, which will allow you
to introduce word or phrase penalties, or weight each component model of the phrase-based
translation model. Implementing reordering within the model is another interesting, but
potentially challenging extension.
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