
17 Algorithms for MT 2: Parameter Optimization Methods

In this chapter we re-visit the problem of optimizing our parameters for sequence-to-sequence
models.

17.1 Error Functions and Error Minimization

Up until this point, most of the models we have encountered have been learned using some
variety of maximum likelihood estimation. Our neural models were all learned by trying to
maximize the probability of the output sentence, and the parameters of the symbolic models
were also generally estimated by counting and dividing, which is also a form of maximum
likelihood. However, when actually using a translation model, we aren’t interested in how
much probability the model gives to good translations, but whether the translation that it
generates is actually good or not. Thus, we would like a method that tunes the parameters
of a machine translation system, whether they be the parameters of a neural network in an
NMT system, or the � parameters of a log linear model in a symbolic system (shown in
Equation 136).

To state this formally, we know that our system will be generating a translation

Ê = argmax
˜

E

P (Ẽ | F ). (151)

Given a corpus of translations Ê and references E , we can calculate an error function

error(E , Ê). (152)

The error function is a measure of how bad the translation is, and is often chosen to be
something like 1�BLEU(E , Ê) for translation, or whatever other appropriate measure we can
come up with for the task at hand. Thus, instead of training the parameters to maximize
the likelihood, we would like to train the parameters to minimize this error, improving the
quality of the results generated by our model.

However, directly optimizing this error function is di�cult for a couple of reasons. The
first reason is that there are a myriad of possible translations Ê that the system could produce
depending on what parameters we choose. It is generally not feasible to enumerate all these
possible outputs, so it is necessary to come up with a method that allows us to work over a
subset of the actual potential translations. The second reason why direct error minimization is
di�cult is because the argmax function in Equation 151, and by corollary the error function
in Equation 152, is not continuous. The result of the argmax will not change unless the
highest-scoring hypothesis changes, and thus tiny changes in the parameters will often not
make a di↵erence in the error because they don’t result in the change in the most probable
hypothesis. As a result, the error function is piecewise constant, in most places its gradient
is zero, and in some places (where the best-scoring hypothesis suddenly changes), its gradient
is undefined. Readers with good memory will remember that the step function in Section 5.3
had the exact same problem, which made it di�cult to optimize.

In order to overcome these di�culties, there are a number of methods to approximate the
hypothesis space and create more easily calculable loss functions, which we describe in the
following sections.

129



17.2 Minimum Error Rate Training

One example of a method that makes it computationally feasible to minimize the error for
arbitrary evaluation measures is the minimum error rate training (MERT) framework of [13].
This gets around the problems stated above in three ways: (1) it assumes that we are dealing
with a linear model where the scores of hypotheses are the linear combination of multiple
features, like the log-linear models described in Section 13.6, (2) it works over only a subset
of the hypotheses that can be produced by a translation system, and (3) it uses an e�cient
line-search method to iteratively find the best value for a single parameter for each parameter
to be optimized. We will give a conceptual overview of the procedure here.

To re-iterate, this method is concerned with linear models, which express the probability
of a sentence according to a linear combination of feature values:50

logP (F,E) / S(F,E),

=
X

i

�
i

�
i

(F,E),

= � · �
i

(F,E), (153)

where S(F,E) is a function expressing a score proportional to the log probability. At the
beginning of the procedure, we start with an initial set of weights � for our linear model,
initialized to some value (for example � = 1 for all values). Given source and target training
corpora F and E , we perform an iterative procedure (the outer loop) of:

Generating hypotheses: For source corpus F , we generate n-best hypotheses Ê according
to the current value of �. This hypothesis generation step can be done using beam
search, as has been covered in previous sections. For the ith sentence in F , F

i

, we will
express the n-best list as Ê

i

and the jth hypothesis in this n-best list as Ê
i,j

.

Adjusting parameters: We start with our initial estimate of �, and try to adjust it to
reduce the error. To define this formally, we first define Ê(�) to be the highest-scoring
hypothesis for each of the sentences in the corpus given �:

Ê(�) = {Ê(�)
1

, Ê(�)
2

, . . . , Ê(�)
|E| } (154)

where
Ê(�)

i

= argmax
˜

E2 ˆE
i

S(F
i

, Ẽ;�). (155)

Then, we attempt to find the lambda that minimizes our error:

�̂ = argmin
�

error(E , Ê(�)). (156)

Because hypotheses can be generated using standard beam search, the main di�culty in
MERT is how to go from our n-best list and initial parameters to �̂. [13]’s method for MERT
proposes an elegant solution using line search, which explores all the possible parameter
vectors � that fall along a particular line in parameter space, and finding the parameters that
minimize the error along this line. This second iterative process (the inner loop) consists of
the following two steps:

50More precisely, this equation would include derivation D as noted before, but we omit it here for conciseness
of notation.
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Figure 54: An example of line search in minimum error rate training (MERT).

Picking a direction: We pick a direction in parameter space to explore, expressed by a
vector d of equal size as the parameter vector. Some options for this vector include a
one-hot vector, where a single parameter is given a value of 1 and the rest are given
a value of zero, a random vector, or a vector calculated according to gradient-based
methods such as the minimum-risk method described in Section 17.3 [4].

Finding the optimal point along this direction: We then perform a line search, detailed
below to find the parameters along this direction that minimize the error. Formally, this
can be thought of defining new parameters �

↵

:= �+ ↵d, and finding the optimal ↵:

�̂

↵

= argmin
↵

error(E , Ê(�
↵

)). (157)

We then update �  �̂

↵

and repeat the loop until no further improvements in error
can be made.

Figure 54 demonstrates this procedure on two questions with answers and their corre-
sponding features in Figure 54 (a). First note that for any hypothesis Ê

i,j

for source F
i

, the
score �

↵

·�(F
i

, Ê
i,j

) can be decomposed into the part a↵ected by � and the part a↵ected by
↵d:

S(F
i

, E
i,j

) = (�+ ↵d) · �(F
i

, E
i,j

)

= � · �(F
i

, E
i,j

) + ↵(d · �(F
i

, E
i,j

))

= b+ c↵. (158)

The final equation in this sequence emphasizes that the score can be thought of as a line,
where b is the intercept, c is the slope, and ↵ is the variable that defines the x-axis.

Figure 54 (b) plots Equation 158 as in this linear equation form. These plots demonstrate
for which values of ↵ candidate E

i,j

will be assigned a particular score, with the highest line
being the one chosen by the system. For F

1

, the chosen answer will be Ê
1,1

for ↵ < �2, to
Ê

1,2

for �2 < ↵ < 2, and to Ê
1,3

for 2 < ↵ as indicated by the range where the answer’s
corresponding line is greater than the others. These ranges can be found by a simple algorithm
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called a line sweep algorithm, which sorts the lines in order of ascending slope, and process
them one by one, finding where this line and the next line intersects.

Next, we take the information of answers chosen in Figure 54 (b) and, given the information
about the error incurred by each answer, convert this into a graph as Figure 54 (c). The
ranges for each question are then combined into a single graph indicating the total error for
each value of ↵ across the entire corpus (Figure 54 (d)). We then choose a point in the center
of the region with the minimal error, and uses this as our value of ↵.

By iteratively performing the outer loop of generating hypotheses, then the inner loop of
gradually moving along lines in the direction that will reduce the error, we can e↵ectively find
a local optimum in the error surface, even though it is highly discontinuous. There are a few
other tricks to MERT that are worth mentioning as well:

Random restarts: One thing to be aware of is that this process is quite prone to falling
into local optima, and thus it is common to re-run the process several times (e.g. 10)
from independent random starting points in the parameter space, then take the best
final point achieved by the several random restarts.

Corpus-level measures: It also should be noted that while the previous example assumed
that we were using a sentence-level error, it is also possible to use MERT with corpus
level metrics like standard BLEU. This is done by adding up the su�cient statistics
used to calculate BLEU (n-gram counts and match counts) across all the sentences,
then calculating BLEU after these statistics have been aggregated across the whole
corpus.

17.3 Minimum Risk Training

The method described in the previous section allows us to perform search to directly minimize
error in linear models. However, this method is not applicable to non-linear models such as
neural MT models, and has trouble scaling to large numbers of features due to its non-
di↵erentiable nature. Minimum risk (MinRisk) training [16, 15] is a method that is very
similar to MERT, but has the desirable property that it results in a loss function that is
di↵erentiable and conducive to optimization through gradient-based methods.

Specifically, the risk is defined as the expected value of the error according to a probabilistic
model, which can be defined as below (assuming that we have a sentence-level measure of
error):

risk(F,E, ✓) =
X

˜

E

P (Ẽ | F ; ✓)error(E, Ẽ). (159)

This objective function looks very similar to the error surface itself, but with smooth tran-
sitions between the values. The leftmost graph of Figure 55 demonstrates this for the same
error surface that we calculated using MERT, and we can see it contains no jagged transi-
tions caused by abruptly switching from one hypothesis to the next. While this is a simple
change – instead of using the argmax we use the sum over all candidates – this function is
now di↵erentiable, allowing us to use standard methods such as stochastic gradient descent.

There are a few things to be careful of here though. First, because it is still intractable to
sum over the entire space of all possible translations, like MERT, we must approximate the
sum in Equation 159. This can be done by choosing a subset of hypotheses S and summing
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Figure 55: An example of a MinRisk loss surface for di↵erent temperature values.

over the hypotheses in this subset. This subset can be obtained either searching for the n-
best candidates according to the current model as we did in MERT, or randomly sampling
hypotheses. In general, the more hypotheses we have the more accurate our estimate of the
gradient will be, but this will also incur a certain amount of computational cost.

The second thing that we should not forget is that MinRisk training is not actually opti-
mizing the error, which is what we are finally interested in. This is obvious by noting that the
MinRisk error surface on the left side of Figure 55 is only a very rough approximation of the
MERT error surface on the right side of Figure 54. To resolve this di↵erence, it is common for
MinRisk training methods introduce a temperature parameter ⌧ , which modifies the risk
calculation as follows:

risk(F,E, ✓, ⌧) =
X

˜

E

P (Ẽ | F ; ✓)1/⌧

Z
error(E, Ê), (160)

where
Z :=

X

E

0

P (E0 | F ; ✓)1/⌧ . (161)

Put simply, this temperature is modifying the “smoothness” of the probability distribution:

• When ⌧ = 1, this is the regular probability distribution.

• When ⌧ > 1, the distribution becomes “smoother”, assigning probability more uniformly
across all of the hypotheses in the space. As ⌧ ! 1, probability will be assigned
uniformly across all hypotheses.

• When ⌧ < 1, the distribution becomes “sharper”, assigning more probability to the
hypotheses with the highest probability in the space. As ⌧ ! 0, all of the probability
will be assigned to the one-best hypothesis. At this point, the objective will be equivalent
to the MERT objective.

An example of the MinRisk objective at di↵erent temperatures is shown in Figure 55, and it
can be seen that as ⌧ approaches zero, the distribution becomes more sharp and closer to the
error surface.

The question then becomes: how do we choose our temperature ⌧ . In order to do so, it is
common to use a strategy called annealing, where we gradually decrease ⌧ from a high value
to zero as training progresses [16].51 This allows us to start with a smooth, easy-to-optimize

51This term comes from the annealing process in metalworking, where the temperature of molten metal is
gradually reduced until it solidifies in the desired shape.
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error surface (e.g. on the left of the figure), and gradually progress to the bumpier less easy-
to-optimize error surface (e.g. on the left of the figure) that is nonetheless closer to our final
objective function.

17.4 Optimization Through Search

Up until now, we talked about how to find parameters that minimize the error or risk with
respect to subset of hypotheses S. However, we mustn’t forget that in sequence-to-sequence
models, simply searching for the highest scoring hypothesis is not an easy task, which ne-
cessitated the advanced search techniques such as beam search in Section 7. One other way
to optimize our parameters is to explicitly optimize the parameters so we do a good job of
searching for the best hypothesis.

Before getting into these specific methods, let us first go over a method called the struc-
tured perceptron [3, 8], which will give some helpful preliminaries. First, in the context
of log-linear models using features �(·) and weights �, the structured perceptron can be
summarized as a simple 2-step process iterated for each training example:

1. Search for the highest scoring hypothesis Ê.

2. If this hypothesis is not the reference E, penalize the weights of �(F, Ê) and boost the
weights of �(F,E).

This is stated explicitly in Algorithm 8.

Algorithm 8 The structured perceptron for linear featurized models.

1: procedure StructuredPerceptron(F , E)
2: for hF,Ei 2 hF , Ei do
3: Ê = argmax

˜

E

� · �(F,E)

4: if Ê 6= E then
5: � �+ �(F,E)� �(F, Ê)
6: end if
7: end for
8: end procedure

An alternative view of the structured perceptron is that it is simply stochastic gradient
descent minimizing the following loss function:

`
percep

= S(F, Ê)� S(F,E). (162)

We can see this in the log-linear case by taking the derivative:

d`
percep

d�
=

d

d�

⇣
� · �(F,E)� � · �(F, Ê)

⌘
, (163)

= �(F,E)� �(F, Ê). (164)

When E = Ê, the feature vectors will be equal and thus no update will be performed. Once
we see the equivalence between the procedure in Algorithm 8 and SGD using the loss function
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Figure 56: An example of where the best hypothesis “a b” does not fall out of the beam (left)
and does (right).

in Equation 162, it becomes clear that we can also use the structured perceptron to optimize
any other variety of model (including non-linear neural models) by doing SGD with a similar
objective.

Now, moving back to search, there is a variety of the structured perceptron that uses
a technique called early stopping [3]. This is a method that applies to any method that
generates output one step at a time, which is true for both neural models (which generate
one word at a time), and symbolic models (which generate ouput one word, phrase, or rule
at a time). The concept behind early stopping is very simple: instead of unrolling all the
way to the end of the hypothesis Ê, the moment we perform an action producing an output
that is inconsistent with the reference E. For example, if the word at time-step t fails to be
generated properly, then we would perform an update based on the loss function

`
early-percep

= S(F, êt
1

)� S(F, et
1

). (165)

This can be seen as penalizing the model as soon as it makes a mistake in search, and thus
brings us a step closer to models that consider the search process in parameter optimization.

Finally, consider the case of beam search. When we are performing beam search there is
a chance that even at a particular time step the score S(F, êt

1

) > S(F, et
1

), by the time we
get to the end of the translation, the reference will have recovered and achieved the highest
score. For example, if we re-use the search example of Figure 23, we can see in the left side of
Figure 56 that just because the best path has temporarily fallen from the first-place position
does not necessarily mean that it will not recover and score the best in the long run.

Search-aware tuning [9] and beam-search optimization [21] are two methods that
attempt to exploit this fact by adapting methods very similar to the early-stopping perceptron
to beam search. Both methods are based on the idea that we want to adjust the score of
hypotheses in the intermediate search steps. Search-aware tuning does so by giving a bonus
to hypotheses at each time step that get lower error at the end of the search process. Beam-
search optimization does so by applying a perceptron-style penalty at each time step where
the best hypothesis falls o↵ the beam (i.e., it would apply a penalty at the first step in the
example on the right of Figure 56, but not at all in the left example).
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17.5 Margin-based Loss-augmented Training

One thing that we should note is that in our description above, we did not explicitly mention
the error incurred by each hypothesis, which was an essential element of MERT and MinRisk
training. One common way to incorporate this type of information into perceptron-based or
search-based algorithms is through the use of a margin. Taking the example of the vanilla
structured perceptron, the idea of a margin is basically that we not only want the score of
the best hypothesis to exceed that of others

S(F,E) > S(F, Ê), (166)

where E 6= Ê), but want it to exceed it by a margin M

S(F,E) > S(F, Ê) +M. (167)

Forcing the MT system to have a margin of error ofM ensures that it will have some breathing
room in its predictions, making it more robust in the face of new unseen inputs.

To incorporate the error into this margin, it is common to use loss-augmented training,
where we further multiply by the margin by the error incurred by that particular hypothesis:

S(F,E) > S(F, Ê) +M ⇤ err(E, Ê). (168)

This is essentially saying that we need to have a larger margin for very bad hypotheses,
and a smaller margin for hypotheses that are only o↵ by a little. A wide variety of methods
incorporating this intuition have been proposed for sequence-to-sequence tasks, and have been
used with some success [17, 19].

17.6 Optimization as Reinforcement Learning

Finally, another way to think about incorporating loss into optimization for machine trans-
lation systems is by treating it as as a form of reinforcement learning. Reinforcement
learning is a general class of machine learning algorithms where a learner takes a sequence
of actions, and after a while receives a reward. Machine translation fits nicely into this
paradigm, as we can view each word selection as an action, and the final evaluation score (e.g.
BLEU) of the produced sentence eval(E, Ê) as the reward.

One simple method of reinforcement learning that is now one of the methods of choice for
neural MT models is policy gradient methods, and specifically the REINFORCE algorithm
[20, 14]. This method can be best explained by starting from the maximum likelihood objective
and slowly building into the full REINFORCE objective. First, the negative log likelihood
loss for a particular reference sentence E is calculated as:

`
nll

(E) =

|E|X

t=1

� logP (e
t

|F, et�1

1

). (169)

Now let’s say we randomly sample a sentence Ê from the current model, we could also optimize
our model to maximize the probability of this sentence:

`
nll

(Ê) =

|E|X

t=1

� logP (ê
t

|F, êt�1

1

). (170)
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This method is called self-training [18, 11], and can be a useful method for semi-supervised
learning when we don’t have access to the reference E, but if we have access to the reference
it seems di�cult to argue for the merits of a method that optimizes towards a randomly
sampled and potentially erroneous translation instead of the gold reference. However, let’s
say we make the following change, weighting the objective with the value of the evaluation
function, giving us the REINFORCE objective:

`
reinforce

(Ê, E) = eval(E, Ê)

|E|X

t=1

� logP (ê
t

|F, êt�1

1

). (171)

Now things make a bit more sense; the higher the evaluation score, the stronger we will push
the gradients towards the sampled sequence, which means that high-scoring samples will have
more e↵ect on the outcome than low-scoring samples.

However, the story is not quite this simple. If we get a really easy sentence where we
would normally expect a BLEU score of basically 1.0, we will be very disappointed if we get
0.6, but if we get a hard sentence where the expectation is that we’ll be able to get basically
nothing right, we may very well be happy if we get a 0.4. To capture this intuition, we can
make the addition of a baseline function base(F, êt�1

1

) as follows:

`
reinforce+base

(Ê, E) =

|E|X

t=1

�(eval(E, Ê)� base(F, êt�1

1

)) logP (ê
t

|F, êt�1

1

). (172)

This baseline function captures our expectation of how easy the sentence will be to translate,
and is trained as a separate model by predicting the value of the evaluation based on the
current hidden state using a regression model. This helps reduce the variance of the reward
and make training more stable.

The above method for reinforcement learning is called policy-based, as the probability
distribution over the next word can be viewed as a probabilistic “policy” for taking the next
action. In contrast, value-based reinforcement learning tries to predict learn a value
function or Q function Q(H, a), where H is our history of actions up to this point, and a
is the next action. In the translation scenario the history is the input sentence and the words
we have translated up to this point (H = hF, et�1

1

i), and the action is the next word (a = e
t

).
One common way to learn this value function is through actor-critic methods [6, 1].

In these methods, we have an actor, which is essentially a policy that performs actions and
samples a set of actions leading to a translation Ê. The critic then attempts to predict the
final evaluation score of the sentence given the current state and next action, estimating the
value function Q(·). At test time, we can then generate translations by calculating the value
function Q(F, et�1

1

, e
t

) for each word e
t

in the vocabulary, and choose the e
t

that has the
highest value according to this function.

17.7 Further Reading

[12] presents an extensive survey of parameter optimization techniques within the context of
symbolic log-linear models.

Evaluation measures for optimization: One thing that was glossed over in the rest of the
section was how we decide our evaluation metrics. The default metric for tuning our
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systems is BLEU score due to its prevalence in evaluation of systems, but it’s possible
that tuning with a more e↵ective metric would result in systems that generate results
that are better for human consumption. Interestingly, despite the fact that there are a
large number of other evaluation measures that have shown better correlation with post-
hoc human meta-evaluation described in Section 10.5, BLEU has proven a surprisingly
di�cult method to beat for optimizing systems, with systems optimized using other
metrics rarely showing convincingly better scores in human evaluation [2, 5].

E�cient data structures and algorithms for optimization: One of the common threads
of the optimization algorithms above is that they cannot enumerate the entire space of
hypotheses, and thus need to optimize over a subset of n-best hypotheses. There are
also e�cient algorithms for symbolic models that make it possible to perform optimiza-
tion over lattices or forests, enumerating a far larger number of hypotheses than can be
covered by an n-best list [10, 7].

17.8 Exercise

As an exercise, try to implement minimum risk training for either a symbolic or neural machine
translation model. This will involve:

• Implementing code to sample a subset of hypotheses given the current parameters.

• Calculating the loss function using your BLEU calculation code.

• Calculating the gradients of the parameters, and updating them.
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