18 Advanced Topics 1: MT System Combination

In the chapters up to this point, we have covered methods to create effective systems for
machine translation. In actuality, when attempting to create the strongest possible system
possible, it is common to combine together the results of multiple systems to create the
best possible single translation possible. This method is called system combination or
ensembling, and this chapter will cover the motivation and methods for doing so.

18.1 Why Combine Together Multiple Systems?

Before explicitly covering methods to perform system combination, it is worth thinking why we
would want to do so in the first place. Obviously, creating two different machine translation
systems (e.g. a phrase-based system and neural system) obviously takes more work than
creating a single system in one of the two paradigms. However, there are in fact significant
advantages to creating results with multiple systems and combining them together.

In fact, there is a very intuitive argument for system combination: some systems are good
at some things and other systems are good at other things. If we take a very simple method
of training multiple systems and selecting which one to use in which situation, we should
be able to improve our results as a whole. For example, if we were creating a web-based
translation system and we expected that users would often input short phrases in addition to
full sentences, we might want to have a system based on looking up the short phrases in the
dictionary, and then use the neural MT system if there was no hit in the dictionary. This is
one very simple variety of system combination.

Output 1: dog thinks of eating bones
Output 2: dogs believe to chomp skeleton
Output 3: cats like to eat me
Output 4: dogs like no big bones
Output 5: he likes to eat sttiak
Combined Output: dogs like #o egt bones

Figure 57: An example of why system combination works: because errors tend to be random
and uncorrelated while correct answers tend to be more correlated.

Even if we don’t do this sort of deciding which system to use, there are still benefits of
combining together multiple systems. For example, Figure 57 shows a conceptual example of
outputs from 5 different systems. Each of the individual outputs is pretty bad, with about
half of the words incorrect, but if we take a simple majority vote over each of the words and
select the word that gets the most votes in each position, we end up getting a good translation
result. The reason why this works is because even if errors are extremely frequent, perhaps
even more than 50% of the total outputs, these errors tend to be somewhat random, while
correct choices tend to match much more often. With this intuition in mind, we will go
through several different methods for combining together results from multiple systems.

140

18.2 Ensembling Decisions During Decoding

One simple but effective way of ensembling systems together that is widely used, particularly
in neural machine translation systems, combines together the decisions predicted by multiple
systems in the process of predicting the next word to output. Let’s say we have K neural
machine translation systems, each of which can calculate a probability distribution of the next
word given the input sentence and the previous words

Pyley | Foefi™) (173)

where P represents the probability distribution estimated by the kth system. This method
takes in these K probability distributions and converts them into a new probability distri-
bution P(e; | F,ei™!), which is finally used when generating translations in the standard
fashion.

The simplest way that we can combine K probabilities into a single probability is linear
interpolation, quite similar to the variety we used when combining together n-gram models

with different orders P

_ 1 _
Pley | Frel™) :ZEPk(et | Fyel™1). (174)
k=1

This can also be parameterized so that the interpolation coefficient for each of the models is
different

K
Pley | Frel™) =Y apPeler | Fref™) (175)
k=1
under the restriction that all values of ay, are between 0 and 1 and add to 1 in order to assure
that we have a well-formed probability distribution.
It is also possible to perform log-linear interpolation, where we add together the prob-
abilities of each model in log space, then perform a softmax to get the final probability:

K
Ple; | Fet™h) = softmax(z o log Pr(ey | F,et™)). (176)
k=1
Here it is necessary to normalize the probabilities with the softmax after combining them
together, as the sum of the log probabilities won’t necessarily result in a well-formed log
probability distribution, and thus we need to re-normalize to ensure that the distribution is
correct. As a result of this, the values of o do not necessarily need to add to 1, and can take
any values we choose.

These methods have a very similar form, but the results are quite different. Specifically,
linear interpolation will tend to favor hypotheses where any one of the models assigns a high
score (similar to the logical “or”), while log-linear interpolation will favor hypotheses where
all of the models agree (similar to the logical “and”).? Thus, when we prefer that all models
are able to confirm a solution, we use log-linear interpolation, and when we prefer that models
both propose complimentary solutions, we use linear interpolation.

52 Question: Confirm this by noting that happens with each method when calculating the ensembled probability
of three events when the probabilities according to model one are {0.6,0.3,0.1} and according to model two are
{0.05,0.3,0.65}.

141

18.3 Post-hoc System Combination

The method in the previous section is based on combining together multiple models that
make decisions about the next word in the sentnece, like neural models. However, let’s say we
want to combine together very different models that make predictions in very different ways,
such as a neural model, a phrase-based model, and a tree-based model. In this case, it is
common to first generate hypotheses with each of these different models, then use these inde-
pendently generated hypotheses to select the best possible solution. Within this framework,
there are generally two different ways to combine together hypotheses from different systems:
reranking and generative combination.

18.3.1 Reranking-based Combination

Reranking consists of taking the hypotheses generated by each system, and using some mea-
sure of their goodness to select the best one. One simple example of reranking would be to
generate N hypotheses for each of the K systems, then select the best of these hypotheses
according to the overall probability calculated by each of the systems. More formally, we
calculate a sample of N hypotheses for each system k:

& =N —Emaka(E | F). (177)

Then we decide the overall space of hypotheses that we will consider as the union of all
hypotheses generated by each system

K
£=Jé&. (178)
k=1

We define the probability of each hypothesis P(E | F') as the linear (Equation 175) or log-
linear (Equation 176) interpolation of the model probabilities, and then select the hypothesis
that has the highest probability according to these interpolated probabilities

E = argmax P(E | F). (179)
Eeg

18.3.2 Minimum Bayes Risk

One other widely used criterion for choosing hypotheses that is simple yet effective in both
single-system and multi-system reranking is the minimum Bayes risk decision criterion
[6]. From the minimum risk training in Section 17.3, we can remember that risk is defined as
the expected error of a particular hypothesis £

risk(E, F) = Y _ P(E | F)error(E, E). (180)
i

In contrast to simply taking the hypothesis with the highest posterior probability in Equa-
tion 179 (the max a posteriori (MAP) decision rule) minimum Bayes risk decision rule is
an alternative that attempts to minimize this risk

A

E = argmin risk(E, F). (181)
Eeg

142

Translation | P(E | F)

FEy this is an example 0.4
FE5 this is an example of minimum Bayes risk 0.2
FE3 this was an example of minimum Bayes risk 0.25
E, this is minimum Bayes risk 0.1

BLEU+1 given ref E[BLEU+1] risk

Ey, Ey, E3 E4

Ey | 1.0 037 0.18 0.35 0.57 0.43

Ey 043 1.0 0.75 0.35 0.61 0.39

Es3 1022 0.7 1.0 031 0.53 047

E; 1034 033 029 1.0 0.42 0.58

Table 1: An example of the difference between choosing a hypothesis based on probability
and based on risk.

A practical example of the consequences of this decision rule is shown in Table 1. In this
example, we can see that the first sentence F; gets significantly higher probability than any
of the other hypotheses. However, Fs is the most similar hypothesis to the other hypotheses
in the space, as indicated by its relatively high BLEU scores when using the other sentences
in the n-best list as a reference. as a result, when we take the expectation of the BLEU
score, we can find that the expected BLEU of Fs is higher than E; and E3 which have higher
probabilities, but are more different from the other hypotheses in the space of hypotheses
that we are considering. By taking into account this similarity, we are able to pick hypotheses
that are more likely to be correct with respect to the other hypotheses, which helps us avoid
picking hypotheses that might have high probability, but would be really bad mistakes if one
of the other hypotheses was actually the correct one.

18.3.3 Tunable Combination

It is also possible to treat system combination as a problem of doing machine translation all
over again, starting with the hypotheses generated by the systems that we want to combine.
For example, it is possible to to combine together multiple lattices of translation results into
a single search lattice, then use search methods from phrase-based translation to find the best
hypothesis [8, 2]. This method is able to generate new hypotheses that are not explicitly
included in the n-best or lattice results of any individual system, and can also take advantage
of the ability of phrase-based systems to be tuned to maximize BLEU score or incorporate
large language models, etc.

18.4 Desiderata for System to be Combined

The previous couple sections have said “let’s assume that we have K systems” and described

methods to combine them together. However, this also leaves open the natural question about

exactly which kinds of systems we should be creating in order to combine them together.
The following are several rules of thumb that can be useful when creating these systems:

Favor Quality The biggest rule of thumb is one that is relatively obvious: the systems that

143

we are combining should be good systems in the first place. They should also be of
relatively uniform quality, as if there is a single system that is much better than the
rest, it is possible that the combined system will not be able to exceed the accuracy of
the single-best system, or may even be dragged down by the others.

Favor Diversity Another favorable quality is diversity; it is often better that the systems
going into the combination method are of different types. For example, we may want
to use one neural system, one phrase-based system, and one tree-based system. The
reason for this stems from the fact that, as stated in Section 18.1, it is important
for errors to be uncorrelated. In general, systems using different paradigms will make
very different mistakes, decreasing the correlation between errors, and increasing the
post-combination performance. That being said, even training multiple neural systems
with exactly the same architecture but different random seeds still provides a significant
boost in performance.

Favor Quantity Finally, where possible it is best to have a large number of models in the
ensemble. The main downside to this is that it becomes necessary to train multiple
models, and at test time it is necessary to calculate according to all of these models.
This generally makes computation increase linearly in the size of the ensemble.

18.5 Ensemble Distillation

The ensembling methods described in this chapter are quite effective, frustratingly so at
times, to the point where they are an essential tool to practicioners who must get the highest
possible accuracy on a particular task. However, ensembles also come at a large cost, both at
training time when we have to train multiple models, and at test time when we have to make
predictions with each of the models, which requires K times more memory and computation
time than prediction with a single model.

One way to alleviate this problem is through model distillation or teacher-student
methods, a process of training a new model based on the predictions of K models [3, 5].
One simple way to do so that has been effective in the context of neural network classification
models is based on training an teacher ensemble of models to predict a probability distribution:

K
Py(ylz) =) Pilyla), (182)
k=1

and then creating another student network that attempts to learn to make its probability
Py(x) copy this teacher distribution. Specifically, we can define the loss function to train
the student network to be the cross-entropy of the teacher distribution given the student
distribution as follows:

H(y,z, Py, P;) = —Zpt(mx) log Py(j|z). (183)

If we assume that the teacher network is always correct, assigning probability of 1 to the
correct answer and 0 to everything else, this reduces to the standard negative log-likelihood
objective that we usually use when training neural networks.

144

When applying these methods to sequence-generation problems, things are a bit more
difficult. We could think of a sequence-level distillation objective such as the following:

H(E,F,Pt’PS):—ZR(E|F)1OgPS(E|F), (184)
E

but this requires enumerating over all the possible sentences in the target language, and is
thus not practical. [5] describe a number of alternative methods:

Word-level Calculation: In this method, we calculate the entropy on a word-by-word-basis

|E|
H(E,F,P, P~ =Y Y P(&|F e ") log Pu(&|F,ei™). (185)

t=1 é;

Sampling-based Approximation: In this method, we simply sample a sentence from the
teacher distribution, and optimize the student distribution using maximum likelihood
with this sampled sentence as the ground truth. This is similar to the self-training
mentioned in Section 17.6, and will get the student network to try to create hypotheses
that match the distribution of the teacher.

Finally, one simple and practical way to combine multiple models (with the same parame-
ter space) into a single model is parameter averaging [1, 4]. In this method we simply take
the parameters 0y of our K models and average them together to get our final parameter set:

1 K
0 = K;ek. (186)

This method is efficient and easy to implement, as it does not require any extra training.
However, in neural networks with hidden layers, because each node in the hidden layer might
represent a different feature in each training run, simply averaging together the parameters
does not result in a coherent model, and accuracy will plummet. However, within a single
training run, and particularly at the end of training, we can expect that the parameters will
not make large changes in the space and the semantics of the nodes in the hidden layer of the
model will be similar. Thus, it is possible to save the parameters periodically several times
near the end of the training process, then average them together at the end. [4] and others
have reported that this stabilizes training for neural machine translation without the costly
process of training multiple models.

18.6 Further Reading

Theoretical Guarantees and Boosting: [7] shows that if we combine together multiple
weak learners, which are only able to perform the classification task at a rate slightly
better than chance, it is possible (with a few conditions) to create a strong learner
that is able to perform arbitrarily well on the data. This is interesting in that it provides
some theoretical grounding for why system combination works so well, and also because
it led to the boosting algorithm, where learners are trained on examples where previous
learners failed to perform well. Similar concepts have been used (within a single-system
context) to improve the training of neural MT systems [9].

145

18.7 Exercise

As an exercise, you could implement ensembling for your neural machine translation system.
This would entail the following:

1. Training multiple neural machine translation systems using different random seeds. Al-
ternatively, you could train models with different structures or on different subsets of
the data.

2. Modifying your search code to make it possible to read in multiple models and calculate
the linear or log-linear combination of their probability distributions while generating
hypotheses.

3. Generate hypotheses with this ensembled model and measure the accuracy.

References

1]

Michael Collins. Discriminative training methods for hidden Markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1-8, 2002.

Kenneth Heafield and Alon Lavie. Combining machine translation output with open source: The
carnegie mellon multi-engine machine translation scheme. The Prague Bulletin of Mathematical
Linguistics, 93:27-36, 2010.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Rico Sennrich. The amu-uedin submission to the
wmt16 news translation task: Attention-based nmt models as feature functions in phrase-based
smt. arXw preprint arXiv:1605.04809, 2016.

Yoon Kim and Alexander M Rush. Sequence-level knowledge distillation. arXiv preprint
arXiv:1606.07947, 2016.

Shankar Kumar and William Byrne. Minimum Bayes-risk decoding for statistical machine trans-
lation. In Proceedings of the 2004 Human Language Technology Conference of the North American
Chapter of the Association for Computational Linguistics (HLT-NAACL), 2004.

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197-227, 1990.

Khe Chai Sim, William J Byrne, Mark JF Gales, Hichem Sahbi, and Philip C Woodland. Consensus
network decoding for statistical machine translation system combination. In Acoustics, Speech and
Signal Processing, 2007. ICASSP 2007. IEEE International Conference on, volume 4, pages IV—
105. IEEE, 2007.

Dakun Zhang, Jungi Kim, Josep Crego, and Jean Senellart. Boosting neural machine translation.
arXiww preprint arXiv:1612.06138, 2016.

146

