
21 Advanced Topics 4: Multi-lingual, Multi-task Models

Up until now, we have assumed that in the case of translation that we would be translating
from one particular type of string to another, for example one language to another language
in the case of MT. In this section we cover creation of models that work well across a number
of languages, a number of tasks, or a number of modalities.

21.1 Methods for Utilizing Heterogeneous Sources

Before delving into the details of the various models that have been proposed, it is worth
mentioning several approaches that can take advantage of multiple heterogeneous types of
data.

21.1.1 Ensembling

The first method, ensembling, consists of combining the prediction of multiple independently
trained models together. In the case of learning from multi-lingual or multi-modal data, this
means that we will have several models that make predictions based on di↵erent types of
heterogeneous input. This will be covered more extensively in the materials in Section 18,
and thus we will not cover the details here.

21.1.2 Multi-task Learning

The second method, multi-task learning [1], is a model training method that attempts
to simultaneously learn models for multiple tasks, in the hope that some of the information
learned from one of the tasks will be useful in solving the other. This is easiest to understand
in the context of neural networks, where the parameters specifying the hidden states allow us
to learn compact representations of the salient information required for any particular task. If
we perform multi-task learning, and the information needed to solve these two tasks overlap
in some way, then training a single model on the two tasks could potentially result in learning
better representations overall, increasing the accuracy on both tasks.

The simplest way of doing multi-task learning is to simply define two loss functions that
we care about `

1

and `
2

, and define our total loss as the sum of these two loss functions.
Thus, the total corpus-level loss for a multi-task model will be the sum of the losses over the
appropriate training corpora C

1

and C
2

respectively:
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). (184)

Once we have defined this loss, we can perform training as we normally do through stochastic
gradient descent, calculating the loss for each of the tasks and performing parameter update
appropriately.

21.1.3 Transfer Learning

The third method, transfer learning [27], is also based on learning from data for multiple
tasks. Essentially, transfer learning usually consists transferring knowledge learned on one
task with large amounts of data to another task with smaller amounts of data. This could be
viewed as a subset of multi-task learning where we mainly care about the results from only a
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Figure 61: Three varieties of pivoting techniques.

single task The simplest way of doing so is to first train a model on task 1, then after training
has concluded, start training on the actual task of interest task 2, which has significantly less
training data, although there are many more sophisticated methods.

As a specific subset of transfer learning, we also often hear about domain adaptation.
This is where we train a model on data from a domain that has a large amount of training
data, then attempt to perform model transfer so that the model works well on a target domain
with less training data.

21.2 Multi-lingual Models

The first, and perhaps most obvious target for leveraging heterogeneous information sources
from the point of view of language is through the use of data from multiple language pairs.

21.2.1 Pivot Translation

One widely used example of practical importance is the case where we want to train a trans-
lation system, but have little or no data in the particular language pair. For example, we
may want to train a system for Spanish-Japanese translation, and have Spanish-English and
English-Japanese translation data, but no direct Spanish-Japanese data. Pivot translation
is the name for a set of methods that allow us to leverage this data in source-pivot and pivot-
target languages to improve translation in our language pair of interest. There are a number
of ways to perform pivoting, summarized in Figure 61 and explained in detail below.

Result pivoting: Also called the direct pivoting method, this simple method uses
existing source-pivot and pivot-target systems to translate our source input to the pivot
language, then from the pivot to the target language. Put more formally, if our source
sentence is F , our pivot sentence G, and our target sentence E, then this would involve
solving the following two equations using our statistical MT systems:

Ĝ = argmax
G

P (G | F )

Ê = argmax
E

P (E | Ĝ)

This method is simple and allows for the use of existing systems, but also su↵ers from error
propagation, where mistakes in the pivot output of the first system result in compounding
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errors in the final output of the second system. These problems can be resolved to some
extent by outputting an n-best list from the first system, and then translating each of the
n-best hypotheses using the second system, then picking the best final result [28]. However,
this results in an n-fold increase in comptuation time for the second translation system, which
may not be acceptable in many practical systems.

Data pivoting: A second method for pivoting works at training time by creating pseudo-
parallel data used to train a translation system in our final language of interest [9]. In the
example above, this means that we would first take our source-pivot corpus and use it to train
a pivot-source translation system. We then take our pivot-target data, and use this pivot-
source system to translate the pivot side into the source language, resulting in a source-target
corpus where the source part is machine translated from the pivot language.54 This data can
then be used to directly train a source-target translation system, although it will obviously
not be perfect due to the fact that the source data is machine translated, and thus contains
errors.

Model pivoting: The final method for pivoting, also called triangulation, trains models
on the source-pivot and pivot-target pairs, and then combines together the statistics in the
model from each language to create a final model [6]. This is easiest to understand from the
context of phrase-based machine translation systems, where the source-pivot and pivot-target
translation models have phrase translation probabilities P (g | f) and P (e | g) respectively.
We can then approximate the phrase translation probability between the source and the target
by summing over the possible pivot sentences that could be found in the middle:

P (e | f) ⇡
X

g

P (e | g)P (g | f). (185)

This approximated probability then can be used as-is in a phrase-based machine translation
system instead of the probabilities directly learned from translation data. This model pivoting
method has the advantage of not making any hard decisions anywhere in the process, and
in the context of symbolic translation models has generally been viewed as the most robust
method for making pivoted systems.

21.2.2 Multi-lingual Training

In contrast to the pivoting models in the previous section, which attempted to create models
for a particular under-resourced language pair, there are also models that attempt to learn
better systems for all languages by sharing training data among various language pairs. Taking
the previous example, this would mean that we would want to create better Japanese-English
and Spanish-English models by using data from both languages.

Multi-task Learning Approaches: The most straightforward way to do so is through
multi-task learning, which has shown promising results particularly for neural machine trans-
lation systems. The simplest instantiation of the multi-task learning approach is when we
have multiple source languages, and we want to translate into a particular target language.
In this case, we assume we have N training corpora {hF

1

, E
1

i, . . . , hFN , EM i}, where each Fn

is in a di↵erent language (e.g. F
1

is Japanese, F
2

is Spanish in the example above), but En
54Question: We could also think of translating the target side of the source-pivot corpus to create a source-

target corpus where the target side is machine translated. However, this is less common. Why do you think
that is?
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is always in the same language (e.g. English). When training the neural machine translation
system, the parameters of the decoder and softmax can be shared over all languages, as the
target language is always the same. For the encoder, it is possible to use a di↵erent encoder
for every language we handle [10, 12], or use a single shared encoder [16, 13]. The shared
encoder approach has the advantage that it can share data across all language pairs, but also
relies on the strong assumption that the neural network is strong enough to learn how to
handle all possible input languages with the same encoder parameters.

It is also possible to relax the assumption that we are handling a single target language,
and create a model that can translate into an arbitrary number of languages. In order to
do so, because the model parameters are shared between language pairs, it is necessary to
make sure that the model knows what language it must be translating into at any particular
time. [12] propose to do so by having a separate decoder for each of the target languages,
similarly to how we had a separate encoder for each of the input languages. This indicates
that if we want to create a system that translates to or from N languages, we will now have
N encoders and N decoders, which is significantly better than training separate models for
all N ⇤ (N � 1) pairs of languages, as would be standard. It is also possible to perform
translation into multiple targets using a single for all target languages, as long as we provide
some indication of the target language that we would like to be translating into [16, 13]. For
example, we can add a special symbol at the beginning of each sentence indicating the target
language, so that an input sentence such as “kare wa ringo wo tabeta” would be input into
the system as “ ENGLISH kare wa ringo wo tabeta” if we wanted to translate into English,
or “ SPANISH kare wa ringo wo tabeta” if we wanted to translate into Spanish.

One enticing feature of these models is that they may be able to do away for the need with
pivoting at all; if we can create a model that translates from an arbitrary number of languages
to an arbitrary number of languages, it may be able to translate between languages even if
parallel data is lacking. This testing of models on examples that do not exist in their training
data is often called zero-shot learning, and a number of papers have reported results in
this zero-shot scenario [12, 16]. At the time of this writing, results for the zero-shot case are
significantly worse tha those of training with standard parallel data, but data-based pivoting
[12] or usage of small amounts of parallel training data [16] have been shown to significantly
improve results to the point where they are competitive.

Transfer Approaches: [30] report results on transfer learning for low-resource neural
machine translation, where we attempt to create a low-resource machine translation system
using data from a higher-resourced language. The method works by first training a system
with the high resourced data, then re-training part of the system with data in the low-
resourced language, while freezing the parameters of some parts of the system. In the case
where a French-English system was transferred to perform Uzbek-English translation, the
authors found that in general freezing the embeddings of the output words while allowing all
other parameters to vary achieved the best results.

Ensembling Approaches: One final application of multi-lingual translation can be
found in ensembling approaches, which attempt to combine together predictions made from
MT systems handling di↵erent languages. Multi-source translation works by translating
sentences in multiple languages to generate a coherent output. This is applicable in situations
where identical content is translated into multiple languages (e.g. Wikipedia articles or TED
talks), in which case we can use all of the already-translated languages to improve our results
on the yet-to-be-translated languages. There are a number of methods for combining multiple
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languages, including simply combining together the predictions created by bilingual systems
on all of the existing source languages using methods such as those described in Section 18
[26], or by specifically devising multi-source model architectures that perform attention over
multiple languages at the same time [29]. It is also possible to perform multi-target transla-
tion, in which predictions in multiple languages are generated at the same time and language
models over the results in one language are used to enforce consistency over the other language
[25].

21.3 Multi-modal Models

The models described so far have attempted to solve a single task, translation, albeit in a
number of di↵erent languages. It is also possible to conceive of models that learn from tasks
other than translation, or even modalities other than text.

Multi-task Learning Approaches: There are a number of multi-task learning ap-
proaches that attempt to improve performance on some sequence-to-sequence learning task
by adding in object functions trained over some other variety of data.

Translation with Syntax: It is also possible to perform neural machine translation with an
auxiliary loss function of predicting syntactic information (in the form of combinatorial
categorical grammar, CCG, tags) [20, 24]. The motivation behind these methods is that
forcing the model to predict the syntactic tags should move the model in a direction
where it more explicitly captures syntactic information in its hidden representations,
improving generalization of the translator to cases where capturing long-range syntax
is necessary.

Multiple NLP Tasks: It is also possible to perform multi-task learning over other NLP
tasks. For example, [7] perform multi-task learning over various NLP tasks, and [19] do
so with a variety of sequence-to-sequence models using memory.

Summarization with Eye Gaze: [17] tackle a summarization task with an auxiliary loss
function based on predicting whether a human reader will spend a significant amount
of time reading a particular portion of a sentence or not. This method is based on
the assumption that readers will spend a longer time looking at salient portions of the
sentence, which should be included in a summary.

Ensemble Approaches: There are also methods to incorporate information from mul-
tiple sources into translation. One interesting example is translation where in addition to the
input sentence we have access to an image that puts the translation into context. This can
be framed as a multi-source translation problem, where once source is a textual sentence, and
one source is the input image [15]. It is also possible to think of this as a pivoting problem,
where we can retrieve similar images and use their descriptions to bias the output of the
translation model [14]. This is similarly important in generation of dialog responses, where
a dialog agent may have access to some sort of multi-modal context that can help bias its
responses [23].

21.4 Multi-domain Models

Finally, one important consideration in creating models is whether the function well in the
target domain. For example, a translation system that functions well overall by incorporating
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large amounts of data from a wide variety of domains may nonetheless perform poorly when
asked to translate sentences in a particular sub-domain (e.g. medical or legal documents,
informal conversations). The field of domain adaptation, a particular instance of transfer
learning, attempts to ensure that trained models function well on the particular domain of
interest by incorporating both domain-agnostic larger data and domain-specific smaller data.

Data Selection Approaches: One simple but e↵ective way to adapt language models
or translation models to a particular domain is to select a subset of data that more closely
matches the target domain, and only train the translation or language model on that data.
One criterion that has proven e↵ective in the selection of data for language models is the
log-likelihood di↵erential between a language model trained on the in-domain data and
the data trained on general-domain data [22]. Specifically, if we have an in-domain corpus
E
in

and general-domain corpus E
gen

, then we train two language models P
in

(E) and P
gen

(E).
Then for each sentence in E

gen

we calculate its log-likelihood di↵erential:

di↵(E) = logP
in

(E)� logP
gen

(E). (186)

This number basically tells us how much more likely the in-domain model thinks the sentence
is than the general-domain model, and presumably sentences with higher di↵erentials will be
more likely to be similar to the sentences in the target domain. Finally, we select a threshold,
and add all sentences in the general-domain corpus that have a di↵erential higher than the
threshold. This can also be done in a multi-lingual fashion to consider information on both
sides of the translation pair [2], or using neural language models to improve generalization
capability [11].

Transfer Approaches: Another way to perform domain adaptation is by training on
all data, but giving priority to the training data from inside the domain. There are a large
number of approaches to do so, including:

Incremental Training: When using an SGD-style training algorithm, it is possible to first
train on the general-domain data, then update the parameters on only the in-domain
data [21]. This simple method is nonetheless e↵ective, in that the latter part of training
will be performed exclusively on the in-domain data, which allows this data to have a
larger e↵ect on the results than the general-domain data.

Domain Labeling: Another simple and popular way to perform domain adaptation is to
add a label to the input specifying the domain [8]. This has been incorporated with
some success into symbolic models by adding domain-specific features to the log-linear
model [5], and to neural MT by adding a special token similar to the tokens used in
multi-lingual translation in subsubsection 21.2.2 [18, 4].

Model-level Combination: It is also common to combine models by combining together
multiple models, one trained on the general domain, and one trained on a specific
domain. This can be done through interpolating multiple models, as mentioned in
Section 3, or through various other methods [3].

21.5 Exercise

One possible exercise for this section is to download data from another language pair and add
it to the training data of either your neural or symbolic training data. Compare the di↵erence
between when multiple source side languages or multiple target-side languages are used.
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