
5 Language Models 3: Neural Networks and Feed-forward
Language Models

In this chapter, we describe language models based on neural networks, a way to learn more
sophisticated functions to improve the accuracy of our probability estimates with less feature
engineering.

5.1 Potential and Problems with Combination Features

steak → high
farmers eat

hay → low
steak → low

cows eat
hay → high

steak → low
farmers grow

hay → high
steak → low

cows grow
hay → low

Figure 6: An example of the e↵ect that combining multiple words can have on translation
probabilities.

Before moving into the technical detail of neural networks, first let’s take a look at a
motivating example in Figure 6. From the example, we can see e

t�2

= “farmers” is compatible
with e

t

= “hay” (in the context “farmers grow hay”), and e
t�1

= eat is also compatible (in the
context “cows eat hay”). If we are using a log-linear model with one set of features dependent
on e

t�1

, and another set of features dependent on e
t�2

, neither set of features can rule out
the unnatural phrase “farmers eat hay.”

One way we can fix this problem is by creating another set of features where we learn
one vector for each pair of words e

t�2

, e
t�1

. If this is the case, our vector for the context
e
t�2

= “farmers”, e
t�1

= “eat” could assign a low score to “hay”, resolving this problem.
However, adding these combination features has one major disadvantage: it greatly expands
the parameters: instead of O(|V |2) parameters for each pair e

i�1

, e
i

, we need O(|V |3) param-
eters for each triplet e

i�2

, e
i�1

, e
i

. These numbers greatly increase the amount of memory
used by the model, and if there are not enough training examples, the parameters may not
be learned properly.

Because of both the importance of and di�culty in learning using these combination
features, a number of methods have been proposed to handle these features. These include
support vector machines [10] and neural networks [22, 11], which we will cover in more
detail below.

5.2 A Brief Overview of Neural Networks

To understand neural networks in more detail, let’s take a very simple example of a function
that we cannot learn with a simple linear classifier like the ones we used in the last chapter:
a function that takes an input x 2 {�1, 1}2 and outputs y = 1 if both x

1

and x
2

are equal
and y = �1 otherwise. This function is shown in Figure 7.

A first attempt at solving this function might define a linear model (like the log-linear
models from the previous chapter) that solves this problem with a model of the following

20

-1

+1

+1

-1

x
1

x
2

Figure 7: A function that cannot be solved by a linear transformation.

form:
y = Wx+ b. (33)

However, this class of functions is not powerful enough to represent the function at hand.10

Thus, we turn to a slightly more complicated class of functions taking the following form:

h = step(W
xh

x+ b

h

)

y = w

hy

h+ b
y

. (34)

Computation is split into two stages: calculation of the hidden layer, which takes in input
x and outputs a vector of hidden variables h, and calculation of the output layer, which
takes in h and calculates the final result y. Both layers consist of an a�ne transform11

using weights W and biases b, followed by a step(·) function, which calculates the following
function:

step(x) =

(
1 if x > 0,

�1 otherwise.
(35)

This function is one example of a class of neural networks called multi-layer perceptrons
(MLPs). In general, MLPs consist one or more hidden layers that consist of an a�ne transform
followed by a non-linear function (such as the step function used here), culminating in an
output layer that calculates some variety of output.

Figure 8 demonstrates why this type of network does a better job of representing the
non-linear function of Figure 7. In short, we can see that the first hidden layer transforms
the input x into a hidden vector h in a di↵erent space that is more conducive for modeling
our final function. Specifically in this case, we can see that h is now in a space where we can
define a linear function (using w

y

and b
y

) that correctly calculates the desired output y.
As mentioned above, MLPs are one specific variety of neural network. More generally,

neural networks can be thought of as a chain of functions (such as the a�ne transforms and
step functions used above, but also including many, many others) that takes some input and
calculates some desired output. The power of neural networks lies in the fact that chaining
together a variety of simpler functions makes it possible to represent more complicated func-
tions in an easily trainable, parameter-e�cient way.12 We will see more about training in

10Question: Prove this by trying to solve the system of equations.
11A fancy name for a multiplication followed by an addition.
12In fact, the simple single-layer MLP described above is a universal function approximator [15], which

means that it can approximate any function to arbitrary accuracy if its hidden vector h is large enough.

21

-1

+1

+1

-1

x
1

x
2

step

step

x
1

1

1

1

-1

-1

-1

-1

h
1

W
h,0

b
h,0

W
h,1

b
h,1

x = {1,1} →
h = {-1, 1}x

2

x
1

1

x
2 h

2

-1

+1

+1

h
1

h
2

x = {1,-1} →
h = {-1, -1}

x = {-1,1} →
h = {-1, -1}

x = {-1,-1} →
h = {1, -1}

h
1

1

1

1

1

y

W
y

b
y

h
2

Original input
variables Hidden layer Transformed variables Output layer

Figure 8: A simple neural network that represents the nonlinear function of Figure 7.

Section 5.3 and give some more examples of how these can be more parameter e�cient in the
discussion of neural network language models in Section 5.5.

5.3 Training Neural Networks

Now that we have a model in Equation 34, we would like to train its parametersW
mh

, b
h

, w
hy

,
and b

y

. To do so, remembering our gradient-based training methods from the last chapter,
we need to define the loss function `(·), calculate the derivative of the loss with respect to the
parameters, then take a step in the direction that will reduce the loss. For our loss function,
let’s use the squared-error loss, a commonly used loss function for regression problems
which measures the di↵erence between the calculated value y and correct value y⇤ as follows

`(y⇤, y) = (y⇤ � y)2. (36)

Next, we need to calculate derivatives. Here, we run into one problem: the step(·) function
is not very derivative friendly, with its derivative being:

dstep(x)

dx
=

(
undefined if x = 0,

0 otherwise.
(37)

Because of this, it is more common to use other non-linear functions, such as the hyperbolic
tangent (tanh) function. The tanh function, as shown in Figure 9, looks very much like
a softened version of the step function that has a continuous gradient everywhere, making
it more conducive to training with gradient-based methods. There are a number of other
alternatives as well, the most popular of which being the rectified linear unit (RelU)

RelU(x) =

(
x if x > 0,

0 otherwise.
(38)

shown in the left of Figure 9. In short, RelUs solve the problem that the tanh function
gets “saturated” and has very small gradients when its input x is very small or very large.

22

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

relu(x)

y

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

tanh(x)

y

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

step(x)

y

Figure 9: Types of non-linearities.

Empirical results have often shown it to be an e↵ective alternative to tanh, including for the
language modeling task described in this chapter [27].

So let’s say we swap in a tanh non-linearity instead of the step function to our network,
we can now proceed to calculate derivatives like we did in Section 4.3. First, we perform the
full calculation of the loss function:

h

0 = W
xh

x+ b

h

h = tanh(h0)

y = w

hy

h+ b
y

` = (y⇤ � y)2. (39)

Then, again using the chain rule, we calculate the derivatives of each set of parameters:

d`

db
y

=
d`

dy

dy

db
y

d`

dw
hy

=
d`

dy

dy

dw
hy

d`

db
h

=
d`

dy

dy

dh

dh

dh0
dh0

db
h

d`

dW
xh

=
d`

dy

dy

dh

dh

dh0
dh0

dW
xh

. (40)

We could go through all of the derivations above by hand and precisely calculate the
gradients of all parameters in the model. Interested readers are free to do so, but even for a
simple model like the one above, it is quite a lot of work and error prone. For more complicated
models, like the ones introduced in the following chapters, this is even more the case.

Fortunately, when we actually implement neural networks on a computer, there is a very
useful tool that saves us a large portion of this pain: automatic di↵erentiation (autodi↵)
[29, 13]. To understand automatic di↵erentiation, it is useful to think of our computation in
Equation 39 as a data structure called a computation graph, two examples of which are
shown in Figure 10. In these graphs, each node represents either an input to the network or
the result of one computational operation, such as a multiplication, addition, tanh, or squared
error. The first graph in the figure calculates the function of interest itself and would be used
when we want to make predictions using our model, and the second graph calculates the loss
function and would be used in training.

Automatic di↵erentiation is a two-step dynamic programming algorithm that operates
over the second graph and performs:

23

W
h

x ×

b
h

+ tanh

w
y

×

b
y

+

y*

sqr_err �

W
h

x ×

b
h

+ tanh

w
y

×

b
y

+ y

Graph for the Training Objective

Graph for the Function Itself

Figure 10: Computation graphs for the function itself, and the loss function.

• Forward calculation, which traverses the nodes in the graph in topological order,
calculating the actual result of the computation as in Equation 39.

• Back propagation, which traverses the nodes in reverse topological order, calculating
the gradients as in Equation 40.

The nice thing about this formulation is that while the overall function calculated by the
graph can be relatively complicated, as long as it can be created by combining multiple
simple nodes we are able to use automatic di↵erentiation to calculate its derivatives using
this dynamic program without doing the derivation by hand.

Thus, to implement a general purpose training algorithm for neural networks, it is neces-
sary to implement these two dynamic programs, as well as the atomic forward function and
backward derivative computations for each type of node that we would need to use. Unfor-
tunately, this in itself is not trivial. Fortunately, there are now a plethora of toolkits that
either perform general-purpose auto-di↵erentiation [3, 14], or auto-di↵erentiation specifically
tailored for machine learning and neural networks [1, 6, 8, 24, 21]. These implement the data
structures, nodes, back-propogation, and parameter optimization algorithms needed to train
neural networks in an e�cient and reliable way, allowing practitioners to get started with
designing their models. In the following sections, we will take this approach, taking a look at
how to create our models of interest in a toolkit called DyNet13, which has a programming
interface that makes it relatively easy to implement the sequence-to-sequence models covered
by this course.14

5.4 An Example Implementation

Figure 11 shows an example of implementing the above neural network in DyNet, which
we’ll step through line-by-line. Lines 1-2 import the necessary libraries. Lines 4-5 specify
parameters of the models: the size of the hidden vector h and the number of epochs (passes
through the data) for which we’ll perform training. Line 7 initializes a DyNet model, which
will store all the parameters we are attempting to learn. Lines 8-11 initialize parameters
W

xh

, b

h

, w

hy

, and b
y

to be the appropriate size so that dimensions in the equations for
Equation 39 match. Line 12 initializes a “trainer”, which will update the parameters in the

13

http://github.com/clab/dynet

14It is also developed by the author of this course, so the decision might have been a wee bit biased.

24

1 import dynet as dy

2 import random

3 # Parameters of the model and training

4 HIDDEN_SIZE = 20

5 NUM_EPOCHS = 20

6 # Define the model and SGD optimizer

7 model = dy.Model()

8 W_xh_p = model.add_parameters((HIDDEN_SIZE, 2))

9 b_h_p = model.add_parameters(HIDDEN_SIZE)

10 W_hy_p = model.add_parameters((1, HIDDEN_SIZE))

11 b_y_p = model.add_parameters(1)

12 trainer = dy.SimpleSGDTrainer(model)

13 # Define the training data, consisting of (x,y) tuples

14 data = [([1,1],1), ([-1,1],-1), ([1,-1],-1), ([-1,-1],1)]

15 # Define the function we would like to calculate

16 def calc_function(x):

17 dy.renew_cg()

18 w_xh = dy.parameter(w_xh_p)

19 b_h = dy.parameter(b_h_p)

20 W_hy = dy.parameter(W_hy_p)

21 b_y = dy.parameter(b_y_p)

22 x_val = dy.inputVector(x)

23 h_val = dy.tanh(w_xh * x_val + b_h)

24 y_val = W_hy * h_val + b_y

25 return y_val

26 # Perform training

27 for epoch in range(NUM_EPOCHS):

28 epoch_loss = 0

29 random.shuffle(data)

30 for x, ystar in data:

31 y = calc_function(x)

32 loss = dy.squared_distance(y, dy.scalarInput(ystar))

33 epoch_loss += loss.value()

34 loss.backward()

35 trainer.update()

36 print("Epoch %d: loss=%f" % (epoch, epoch_loss))

37 # Print results of prediction

38 for x, ystar in data:

39 y = calc_function(x)

40 print("%r -> %f" % (x, y.value()))

Figure 11: Computation graphs for the function itself, and the loss function.

25

M

lookup(e
t-1
)

lookup(e
t-2
)

concat

W
h
b
h

x +

W
p
b
p

x +tanh softmax p

Figure 12: A computation graph for a tri-gram feed-forward neural language model.

model according to an update strategy (here we use simple stochastic gradient descent, but
trainers for AdaGrad, Adam, and other strategies also exist). Line 14 creates the training
data for the function in Figure 7.

Lines 16-25 define a function that takes input x and creates a computation graph to
calculate Equation 39. First, line 17 creates a new computation graph to hold the computation
for this particular training example. Lines 18-21 take the parameters (stored in the model) and
adds them to the computation graph as DyNet variables for this particular training example.
Line 22 takes a Python list representing the current input and puts it into the computation
graph as a DyNet variable. Line 23 calculates the hidden vector h, Line 24 calculates the
value y, and Line 25 returns it.

Lines 27-36 perform training for NUM EPOCHS passes over the data (one pass through the
training data is usually called an “epoch”). Line 28 creates a variable to keep track of the loss
for this epoch for later reporting. Line 29 shu✏es the data, as recommended in Section 4.2.
Lines 30-35 perform stochastic gradient descent, looping over each of the training examples.
Line 31 creates a computation for the function itself, and Line 32 adds computation for the
loss function. Line 33 runs the forward calculation to calculate the loss and adds it to the loss
for this epoch. Line 34 runs back propagation, and Line 35 updates the model parameters.
At the end of the epoch, we print the loss for the epoch in Line 36 to make sure that the loss
is going down and our model is converging.

Finally, at the end of training in Lines 38-40, we print the output results. In an actual
scenario, this would be done on a separate set of test data.

5.5 Neural-network Language Models

Now that we have the basics down, it is time to apply neural networks to language modeling
[20, 4]. A feed-forward neural network language model is very much like the log-linear language
model that we mentioned in the previous section, simply with the addition of one or more
non-linear layers before the output.

First, let’s recall the tri-gram log-linear language model. In this case, assume we have two
sets of features expressing the identity of e

t�1

(represented as W (1)) and e
t�2

(as W (2)), the
equation for the log-linear model looks like this:

s = W
(1)

·,e
t�1

+W
(2)

·,e
t�2

+ b

p = softmax(s), (41)

where we add the appropriate columns from the weight matricies to the bias to get the score,
then take the softmax to turn it into a probability.

26

1 # Define the lookup parameters at model definition time

2 # VOCAB_SIZE is the number of words in the vocabulary

3 # EMBEDDINGS_SIZE is the length of the word embedding vector

4 M_p = model.add_lookup_parameters((VOCAB_SIZE, EMBEDDING_SIZE))

5 # Load the parameters into the computation graph

6 M = dy.lookup_parameter(M_p)

7 # And look up the vector for word i

8 m = M[i]

Figure 13: Code for looking things up in DyNet.

Compared to this, a tri-gram neural network model with a single layer is structured as
shown in Figure 12 and described in equations below:

m = concat(M·,e
t�2

,M·,e
t�1

)

h = tanh(W
mh

m+ b

h

)

s = W
hs

h+ b

s

p = softmax(s) (42)

In the first line, we obtain a vector m representing the context ei�1

i�n+1

(in the particular
case above, we are handling a tri-gram model so n = 3). Here, M is a matrix with |V | columns,
and L

m

rows, where each column corresponds to an L
m

-length vector representing a single
word in the vocabulary. This vector is called aword embedding or aword representation,
which is a vector of real numbers corresponding to particular words in the vocabulary.15 The
interesting thing about expressing words as vectors of real numbers is that each element of
the vector could reflect a di↵erent aspect of the word. For example, there may be an element
in the vector determining whether a particular word under consideration could be a noun, or
another element in the vector expressing whether the word is an animal, or another element
that expresses whether the word is countable or not.16 Figure 13 shows an example of how
to define parameters that allow you to look up a vector in DyNet.

The vector m then results from the concatenation of the word vectors for all of the words
in the context, so |m| = L

m

⇤ (n � 1). Once we have this m, we run the vectors through
a hidden layer to obtain vector h. By doing so, the model can learn combination features
that reflect information regarding multiple words in the context. This allows the model to
be expressive enough to represent the more di�cult cases in Figure 6. For example, given a
context is “cows eat”, and some elements of the vector M·,cows

identify the word as a “large
farm animal” (e.g. “cow”, “horse”, “goat”), while some elements of M·,eat corresponds to
“eat” and all of its relatives (“consume”, “chew”, “ingest”), then we could potentially learn
a unit in the hidden layer h that is active when we are in a context that represents “things
farm animals eat”.

15For the purposes of the model in this chapter, these vectors can basically be viewed as one set of tunable
parameters in the neural language model, but there has also been a large amount of interest in learning these
vectors for use in other tasks, which is outlined in Section 5.6.

16In reality, it is rare that single elements in the vector have such an intuitive meaning unless we impose
some sort of constraint, such as sparsity constraints [19].

27

Next, we calculate the score vector for each word: s 2 R|V |. This is done by performing an
a�ne transform of the hidden vector h with a weight matrix W

hs

2 R|V |⇥|h| and adding a bias
vector b

s

2 R|V |. Finally, we get a probability estimate p by running the calculated scores
through a softmax function, like we did in the log-linear language models. For training, if we
know e

t

we can also calculate the loss function as follows, similarly to the log-linear model:

` = �log(p
e

t

). (43)

DyNet has a convenience function that, given a score vector s, will calculate the negative log
likelihood loss:

1 loss = dy.pickneglogsoftmax(s, e_t)

The reasons why the neural network formulation is nice becomes apparent when we com-
pare this to n-gram language models in Section 3:

Better generalization of contexts: n-gram language models treat each word as its own
discrete entity. By using input embeddings M , it is possible to group together similar
words so they behave similarly in the prediction of the next word. In order to do the
same thing, n-gram models would have to explicitly learn word classes and using these
classes e↵ectively is not a trivial problem [7].

More generalizable combination of words into contexts: In an n-gram language model,
we would have to remember parameters for all combinations of {cow, horse, goat} ⇥
{consume, chew, ingest} to represent the context “things farm animals eat”. This would
be quadratic in the number of words in the class, and thus learning these parameters
is di�cult in the face of limited training data. Neural networks handle this problem by
learning nodes in the hidden layer that can represent this quadratic combination in a
feature-e�cient way.

Ability to skip previous words: n-gram models generally fall back sequentially from longer
contexts (e.g. “the two previous words et�1

t�2

”) to shorter contexts (e.g. “the previous
words e

t�1

”), but this doesn’t allow them to “skip” a word and only reference for exam-
ple, “the word two words ago e

t�2

”. Log-linear models and neural networks can handle
this skipping naturally.

5.6 Further Readings

In addition to the methods described above, there are a number of extensions to neural-
network language models that are worth discussing.

Softmax approximations: One problem with the training of log-linear or neural network
language models is that at every training example, they have to calculate the large score
vector s, then run a softmax over it to get probabilities. As the vocabulary size |V |
grows larger, this can become quite time-consuming. As a result, there are a number
of ways to reduce training time. One example are methods that sample a subset of the
vocabulary V 0 2 V where |V 0| << V , then calculate the scores and approximate the

28

loss over this smaller subset. Examples of these include methods that simply try to get
the true word e

t

to have a higher score (by some margin) than others in the subsampled
set [9] and more probabilistically motivated methods, such as importance sampling
[5] or noise-contrastive estimation (NCE; [18]). Interestingly, for other objective
functions such as linear regression and special variety of softmax called the spherical
softmax, it is possible to calculate the objective function in ways that do not scale
linearly with the vocabulary size [28].

Other softmax structures: Another interesting trick to improve training speed is to create
a softmax that is structured so that its loss functions can be computed e�ciently. One
way to do so is the class-based softmax [12], which assigns each word e

t

to a class c
t

,
then divides computation into two steps: predicting the probability of class c

t

given the
context, then predicting the probability of the word e

t

given the class and the current
context P (e

t

|c
t

, et�1

t�n+1

)P (c
t

|et�1

t�n+1

). The advantage of this method is that we only need
to calculate scores for the correct class c

t

out of |C| classes, then the correct word e
t

out
of the vocabulary for class c

t

, which is size |V
c

t

|. Thus, our computational complexity
becomes O(|C| + |V

c

t

|) instead of O(|V |).17 The hierarchical softmax [17] takes this
a step further by predicting words along a binary-branching tree, which results in a
computational complexity of O(log

2

|V |).

Other models to learn word representations: As mentioned in Section 5.5, we learn
word embeddings M as a by-product of training our language models. One very nice
feature of word representations is that language models can be trained purely on raw
text, but the resulting representations can capture semantic or syntactic features of the
words, and thus can be used to e↵ectively improve down-stream tasks that don’t have
a lot of annotated data, such as part-of-speech tagging or parsing [25].18 Because of
their usefulness, there have been an extremely large number of approaches proposed to
learn di↵erent varieties of word embeddings, from early work based on distributional
similarity and dimensionality reduction [23, 26] to more recent models based on predic-
tive models similar to language models [25, 16], with the general current thinking being
that predictive models are the more e↵ective and flexible of the two [2].19The most well-
known methods are the continuous-bag-of-words and skip-gram models implemented
in the software word2vec20 , which define simple objectives for predicting words using
the immediately surrounding context or vice-versa. word2vec uses a sampling-based
approach and parallelization to easily scale up to large datasets, which is perhaps the
primary reason for its popularity. These methods are not language models, as they do
not calculate a probability of the sentence P (E), but many of the parameter estimation
techniques can be shared.

17Question: What is the ideal class size to achieve the best computational e�ciency?
18Manning (2015) called word embeddings the “Sriracha sauce of NLP”, because you

can add them to anything to make it better http://nlp.stanford.edu/

~

manning/talks/

NAACL2015-VSM-Compositional-Deep-Learning.pdf

19Daumé III (2016) called word embeddings the “Sriracha sauce of NLP: it sounds like a good idea, you add
too much, and now you’re crying” https://twitter.com/haldaume3/status/706173575477080065

20

https://code.google.com/archive/p/word2vec/

29

5.7 Exercise

In the exercise for this chapter, we will use DyNet to construct a feed-forward language model
and evaluate its performance.

Writing the program will entail:

• Writing a function to read in the data and (turn it into numerical IDs).

• Writing a function to calculate the loss function by looking up word embeddings, then
running them through a multi-layer perceptron, then predicting the result.

• Writing code to perform training using this function.

• Writing evaluation code that measures the perplexity on a held-out data set.

Language modeling accuracy should be measured in the same way as previous exercises and
compared with the previous models.

Potential improvements to the model include tuning the various parameters of the model.
How big should h be? Should we add additional hidden layers? What optimizer with what
learning rate should we use? What happens if we implement one of the more e�cient versions
of the softmax explained in Section 5.6?

References

[1] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Je↵rey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (ACL), pages 238–247,
Baltimore, Maryland, June 2014. Association for Computational Linguistics.

[3] Claus Bendtsen and Ole Stauning. Fadbad, a flexible c++ package for automatic di↵erentiation.
Department of Mathematical Modelling, Technical University of Denmark, 1996.

[4] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc Gauvain.
Neural probabilistic language models. In Innovations in Machine Learning, volume 194, pages
137–186. 2006.

[5] Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accelerate training
of a neural probabilistic language model. IEEE Transactions on Neural Networks, 19(4):713–722,
2008.

[6] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume
Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A CPU and GPU
math compiler in Python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

[7] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-based n-gram models of natural language. Comput. Linguist., 18(4):467–479, 1992.

[8] Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine learning
software library. Technical report, Idiap, 2002.

30

[9] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research,
12:2493–2537, 2011.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

[11] Yoav Goldberg. A primer on neural network models for natural language processing. arXiv
preprint arXiv:1510.00726, 2015.

[12] Joshua Goodman. Classes for fast maximum entropy training. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 561–564. IEEE, 2001.

[13] Andreas Griewank. Automatic di↵erentiation of algorithms: theory, implementation, and appli-
cation. In proceedings of the first SIAM Workshop on Automatic Di↵erentiation, 1991.

[14] Robin J Hogan. Fast reverse-mode automatic di↵erentiation using expression templates in c++.
ACM Transactions on Mathematical Software (TOMS), 40(4):26, 2014.

[15] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Je↵rey Dean. E�cient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je↵ Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Proceedings of the 27th Annual
Conference on Neural Information Processing Systems (NIPS), pages 3111–3119, 2013.

[18] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426, 2012.

[19] Brian Murphy, Partha Talukdar, and Tom Mitchell. Learning e↵ective and interpretable semantic
models using non-negative sparse embedding. In Proceedings of the 24th International Conference
on Computational Linguistics (COLING), pages 1933–1950, 2012.

[20] Masami Nakamura, Katsuteru Maruyama, Takeshi Kawabata, and Kiyohiro Shikano. Neural
network approach to word category prediction for English texts. In Proceedings of the 13th
International Conference on Computational Linguistics (COLING), 1990.

[21] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anas-
tasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Man-
aal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gau-
rav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. Dynet: The dynamic neural network toolkit. arXiv
preprint arXiv:1701.03980, 2017.

[22] David E Rumelhart, Geo↵rey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[23] Hinrich Sch utze. Word space. 5:895–902, 1993.

[24] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open
source framework for deep learning. In Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing Systems
(NIPS), 2015.

[25] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general
method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 384–394. Association for Computational Linguistics,
2010.

31

[26] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37:141–188, 2010.

[27] Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding with large-scale
neural language models improves translation. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1387–1392, 2013.

[28] Pascal Vincent, Alexandre de Brébisson, and Xavier Bouthillier. E�cient exact gradient update
for training deep networks with very large sparse targets. In Proceedings of the 29th Annual
Conference on Neural Information Processing Systems (NIPS), pages 1108–1116, 2015.

[29] R.E. Wengert. A simple automatic derivative evaluation program. Communications of the ACM,
7(8):463–464, 1964.

32

