
7 Neural MT 1: Neural Encoder-Decoder Models

From Section 3 to Section 6, we focused on the language modeling problem of calculating
the probability P (E) of a sequence E. In this section, we return to the statistical machine
translation problem (mentioned in Section 2) of modeling the probability P (E|F ) of the
output E given the input F .

7.1 Encoder-decoder Models

The first model that we will cover is called an encoder-decoder model [3, 7, 9, 19]. The basic
idea of the model is relatively simple: we have an RNN language model, but before starting
calculation of the probabilities of E, we first calculate the initial state of the language model
using another RNN over the source sentence F . The name “encoder-decoder” comes from
the idea that the first neural network running over F “encodes” its information as a vector
of real-valued numbers (the hidden state), then the second neural network used to predict E
“decodes” this information into the target sentence.
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Figure 21: A computation graph of the encoder-decoder model.

If the encoder is expressed as RNN(f)(·), the decoder is expressed as RNN(e)(·), and we
have a softmax that takes RNN(e)’s hidden state at time step t and turns it into a probability,
then our model is expressed as follows (also shown in Figure 21):
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In the first two lines, we look up the embedding m

(f)

t

and calculate the encoder hidden state

h

(f)

t

for the tth word in the source sequence F . We start with an empty vector h(f)

0

= 0, and
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by h

(f)

|F |, the encoder has seen all the words in the source sentence. Thus, this hidden state
should theoretically be able to encode all of the information in the source sentence.

In the decoder phase, we predict the probability of word e
t

at each time step. First, we

similarly look up m

(e)

t

, but this time use the previous word e
t�1, as we must condition the

probability of e
t

on the previous word, not on itself. Then, we run the decoder to calculate

h

(e)

t

. This is very similar to the encoder step, with the important di↵erence that h

(e)

0

is set

to the final state of the encoder h(f)

|F |, allowing us to condition on F . Finally, we calculate the

probability p

(e)

t

by using a softmax on the hidden state h

(e)

t

.
While this model is quite simple (only 5 lines of equations), it gives us a straightforward

and powerful way to model P (E|F ). In fact, [19] have shown that a model that follows
this basic pattern is able to perform translation with similar accuracy to heavily engineered
systems specialized to the machine translation task (although it requires a few tricks over
the simple encoder-decoder that we’ll discuss in later sections: beam search (Section 7.2), a
di↵erent encoder (Section 7.3), and ensembling (Section 18)).

7.2 Generating Output

However, at this point, we have only mentioned how to create a probability model P (E|F )
and haven’t yet covered how to actually generate translations from it, which we will now cover
in the next section. In general, when we generate output we can do so according to several
criteria:

Random Sampling: Randomly select an output E from the probability distribution P (E|F ).
This is usually denoted Ê ⇠ P (E|F ).

1-best Search: Find the E that maximizes P (E|F ), denoted Ê = argmax
E

P (E|F ).

n-best Search: Find the n outputs with the highest probabilities according to P (E|F ).

Which of these methods we will choose will depend on our application, so we will discuss some
use cases.

7.2.1 Random Sampling and Greedy Search

First, random sampling is useful in cases where we may want to get a variety of outputs for
a particular input. One example of a situation where this is useful would be in a sequence-
to-sequence model for a dialog system, where we would prefer the system to not always give
the same response to a particular user input to prevent monotony. Luckily, in models like the
encoder-decoder above, it is simple to exactly generate samples from the distribution P (E|F )
using a method called ancestral sampling. Ancestral sampling works by sampling variable
values one at a time, gradually conditioning on more context, so at time step t, we will
sample a word from the distribution P (e

t

|êt�1
1

). In the encoder-decoder model, this means we
simply have to calculate p

t

according to the previously sampled inputs, leading to the simple
generation algorithm in Algorithm 3.

One thing to note is that sometimes we also want to know the probability of the sentence
that we sampled. For example, given a sentence Ê generated by the model, we might want to
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know how certain the model is in its prediction. During the sampling process, we can calcu-

late P (Ê|F ) =
Q| ˆE|

t

P (ê
t

|F, Êt�1
1

) incrementally by stepping along and multiplying together
the probabilities of each sampled word. However, as we remember from the discussion of
probability vs. log probability in Section 3.3, using probabilities as-is can result in very small
numbers that cause numerical precision problems on computers. Thus, when calculating the
full-sentence probability it is more common to instead add together log probabilities for each
word, which avoids this problem.

Algorithm 3 Generating random samples from a neural encoder-decoder
1: procedure Sample
2: for t from 1 to |F | do
3: Calculate m

(f)

t

and h

(f)

t

4: end for
5: Set ê

0

=“hsi” and t 0
6: while ê

t

6=“h/si” do
7: t t+ 1
8: Calculate m
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t

, h(e)

t

, and p
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t

from ê
t�1

9: Sample ê
t

according to p

(e)

t

10: end while
11: end procedure

Next, let’s consider the problem of generating a 1-best result. This variety of generation
is useful in machine translation, and most other applications where we simply want to output
the translation that the model thought was best. The simplest way of doing so is greedy
search, in which we simply calculate p

t

at every time step, select the word that gives us
the highest probability, and use it as the next word in our sequence. In other words, this
algorithm is exactly the same as Algorithm 3, with the exception that on Line 9, instead of

sampling ê
t

randomly according to p

(e)

t

, we instead choose the max: ê
t

= argmax
i

p(e)
t,i

.

Interestingly, while ancestral sampling exactly samples outputs from the distribution ac-
cording to P (E|F ), greedy search is not guaranteed to find the translation with the highest
probability. An example of a case in which this is true can be found in the graph in Fig-
ure 22, which is an example of search graph with a vocabulary of {a, b, h/si}.25 As an
exercise, I encourage readers to find the true 1-best (or n-best) sentence according to the
probability P (E|F ) and the probability of the sentence found according to greedy search and
confirm that these are di↵erent.

7.2.2 Beam Search

One way to solve this problem is through the use of beam search. Beam search is similar
to greedy search, but instead of considering only the one best hypothesis, we consider b best
hypotheses at each time step, where b is the “width” of the beam. An example of beam search
where b = 2 is shown in Figure 23 (note that we are using log probabilities here because they
are more conducive to comparing hypotheses over the entire sentence, as mentioned before).

25In reality, we will never have a probability of exactly P (e
t

= h/si|F, et�1

1

) = 1.0, but for illustrative
purposes, we show this here.
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Figure 22: A search graph where greedy search fails.
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In the first time step, we expand hypotheses for e
1

corresponding to all of the three words in
the vocabulary, then keep the top two (“b” and “a”) and delete the remaining one (“h/si”).
In the second time step, we expand hypotheses for e

2

corresponding to the continuation of the
first hypotheses for all words in the vocabulary, temporarily creating b⇤ |V | active hypotheses.
These active hypotheses are also pruned down to the b active hypotheses (“a b” and “b b”).
This process of calculating scores for b ⇤ |V | continuations of active hypotheses, then pruning
back down to the top b, is continued until the end of the sentence.

One thing to be careful about when generating sentences using models, such as neural

machine translation, where P (E|F ) =
Q|E|

t

P (e
t

|F, et�1
1

) is that they tend to prefer shorter
sentences. This is because every time we add another word, we multiply in another probability,
reducing the probability of the whole sentence. As we increase the beam size, the search
algorithm gets better at finding these short sentences, and as a result, beam search with a
larger beam size often has a significant length bias towards these shorter sentences.

There have been several attempts to fix this length bias problem. For example, it is possible
to put a prior probability on the length of the sentence given the length of the previous sentence
P (|E|||F |), and multiply this with the standard sentence probability P (E|F ) at decoding time
[6]:

Ê = argmax
E

logP (|E|||F |) + logP (E|F ). (63)

This prior probability can be estimated from data, and [6] simply estimate this using a
multinomial distribution learned on the training data:

P (|E|||F |) = c(|E|, |F |)
c(|F |) . (64)

A more heuristic but still widely used approach normalizes the log probability by the length
of the target sentence, e↵ectively searching for the sentence that has the highest average log
probability per word [2]:

Ê = argmax
E

logP (E|F )/|E|. (65)

7.3 Other Ways of Encoding Sequences

In Section 7.1, we described a model that works by encoding sequences linearly, one word at
a time from left to right. However, this may not be the most natural or e↵ective way to turn
the sentence F into a vector h. In this section, we’ll discuss a number of di↵erent ways to
perform encoding that have been reported to be e↵ective in the literature.

Reverse and Bidirectional Encoders: First, [19] have proposed a reverse encoder.
In this method, we simply run a standard linear encoder over F , but instead of doing so from
left to right, we do so from right to left.
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The motivation behind this method is that for pairs of languages with similar ordering (such
as English-French, which the authors experimented on), the words at the beginning of F will
generally correspond to words at the beginning of E. Assuming the extreme case that words
with identical indices correspond to each-other (e.g. f

1

corresponds to e
1

, f
2

to e
2

, etc.), the
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Figure 24: The distances between words with the same index in the forward and reverse
decoders.

distance between corresponding words in the linear encoding and decoding will be |F |, as
shown in Figure 24(a). Remembering the vanishing gradient problem from Section 6.3, this
means that the RNN has to propagate the information across |F | time steps before making a
prediction, a di�cult feat. At the beginning of training, even RNN variants such as LSTMs
have trouble, as they have to essentially “guess” what part of the information encoded in their
hidden state is being used without any prior bias.

Reversing the encoder helps solve this problem by reducing the length of dependencies for
a subset of the words in the sentence, specifically the ones at the beginning of the sentences.
As shown in Figure 24(b), the length of the dependency for f

1

and e
1

is 1, and subsequent
pairs of f

t

and e
t

have a distance of 2t�1. During learning, the model can “latch on” to these
short-distance dependencies and use them as a way to bootstrap the model training, after
which it becomes possible to gradually learn the longer dependencies for the words at the end
of the sentence. In [19], this proved critical to learn e↵ective models in the encoder-decoder
framework.

However, this approach of reversing the encoder relies on the strong assumption that the
order of words in the input and output sequences are very similar, or at least that the words
at the beginning of sentences are the same. This is true for languages like English and French,
which share the same “subject-verb-object (SVO)” word ordering, but may not be true for
more typologically distinct languages. One type of encoder that is slightly more robust to
these di↵erences is the bi-directional encoder [1]. In this method, we use two di↵erent
encoders: one traveling forward and one traveling backward over the input sentence
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which are then combined into the initial vector h(e)

0

for the decoder RNN. This combination
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Figure 25: Examples of convolutional and tree-structured networks.

can be done by simply concatenating the two final vectors
�!
h |F | and

 �
h

1

. However, this also
requires that the size of the vectors for the decoder RNN be exactly equal to the combined
size of the two encoder RNNs. As a more flexible alternative, we can add an additional
parameterized hidden layer between the encoder and decoder states, which allows us to convert
the bidirectional encoder states into an appropriately-sized state for the decoder:
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Convolutional Neural Networks: In addition, there are also methods for decoding
that move beyond a simple linear view of the input sentence. For example, convolutional
neural networks (CNNs; [8, 13], Figure 25(a)) are a variety of neural net that combines
together information from spatially or temporally local segments. They are most widely
applied to image processing but have also been used for speech processing (as “time-delay
neural networks” [22]), as well as the processing of textual sequences. While there are many
varieties of CNN-based models of text (e.g. [11, 14, 10]), here we will show an example from
[12]. This model has n filters with a width w that are passed incrementally over w-word
segments of the input. Specifically, given an embedding matrix M of width |F |, we generate
a hidden layer matrix H of width |F |� w + 1, where each column of the matrix is equal to

h

t

= W concat(m
t

,m
t+1

, . . . ,m
t+w�1) (70)

where W 2 Rn⇥w|m| is a matrix where the ith row represents the parameters of filter i that
will be multiplied by the embeddings of w consecutive words. If w = 3, we can interpret this
as h

1

extracting a vector of features for f3

1

, h
2

as extracting a vector of features for f4

2

, etc.
until the end of the sentence.

Finally, we perform a pooling operation that converts this matrix H (which varies in
width according to the sentence length) into a single vector h (which is fixed-size and can
thus be used in down-stream processing). Examples of pooling operations include average,
max, and k-max [11].

Compared to RNNs and their variants, CNNs have several advantages and disadvantages:

• On the positive side, CNNs provide a relatively simple way to detect features of short
word sequences in sentence text and accumulate them across the entire sentence.
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the red cat chased the little bird

DET JJ NN VBD DET JJ NN

NP'
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Figure 26: An example of a syntax tree for a sentence showing the sentence structure and
phrase types (DET=“determiner”, JJ=“adjective”, NN=“noun”, VBD=“past tense verb”,
NP=“noun phrase”, NP’=“part of a noun phrase”, VP=“verb phrase”, S=“sentence”).

• Also on the positive side, CNNs do not su↵er as heavily from the vanishing gradient
problem, as they do not need to propagate gradients across multiple time steps.

• On the negative side, CNNs are not quite as expressive and are a less natural way of
expressing complicated patterns that move beyond their filter width.

In general, CNNs have been found to be quite e↵ective for text classification, where it is more
important to pick out the most indicative features of the text and there is less of an emphasis
on getting an overall view of the content [12]. There have also been some positive results
reported using specific varieties of CNNs for sequence-to-sequence modeling [10].

Tree-structured Networks: Finally, one other popular form of encoder that is widely
used in a number of tasks are tree-structured networks ([16, 18], Figure 25(b)). The basic
idea behind these networks is that the way to combine the information from each particular
word is guided by some sort of structure, usually the syntactic structure of the sentence, an
example of which is shown in Figure 26. The reason why this is intuitively useful is because
each syntactic phrase usually also corresponds to a coherent semantic unit. Thus, performing
the calculation and manipulation of vectors over these coherent units will be more appropriate
compared to using random substrings of words, like those used by CNNs.

For example, let’s say we have the phrase “the red cat chased the little bird” as shown
in the figure. In this case, following a syntactic tree would ensure that we calculate vectors
for coherent units that correspond to a grammatical phrase such as “chased” and “the little
bird”, and combine these phrases together one by one to obtain the meaning of larger co-
herent phrase such as “chased the little bird”. By doing so, we can take advantage of the
fact that language is compositional, with the meaning of a more complex phrase resulting
from regular combinations and transformation of smaller constituent phrases [20]. By taking
this linguistically motivated and intuitive view of the sentence, we hope will help the neural
networks learn more generalizable functions from limited training data.

Perhaps the most simple type of tree-structured network is the recursive neural net-
work proposed by [18]. This network has very strong parallels to standard RNNs, but instead
of calculating the hidden state h

t

at time t from the previous hidden state h

t�1 as follows:

h

t

= tanh(W
xh

x

t

+W
hh

h

t�1 + b

h

), (71)
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we instead calculate the hidden state of the parent node h

p

from the hidden states of the left
and right children, h

l

and h

r

respectively:

h
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= tanh(W
xp

x

t

+W
lp

h
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+W
rp

h

r

+ b

p

). (72)

Thus, the representation for each node in the tree can be calculated in a bottom-up fashion.
Like standard RNNs, these recursive networks su↵er from the vanishing gradient problem.

To fix this problem there is an adaptation of LSTMs to tree-structured networks, fittingly
called tree LSTMs [21], which fixes this vanishing gradient problem. There are also a wide
variety of other kinds of tree-structured composition functions that interested readers can
explore [17, 4, 5]. Also of interest is the study by [15], which examines the various tasks in
which tree structures are necessary or unnecessary for NLP.

7.4 Exercise

In the exercise for this chapter, we will create an encoder-decoder translation model and make
it possible to generate translations.

Writing the program will entail:

• Extend your RNN language model code to first read in a source sentence to calculate
the initial hidden state.

• On the training set, write code to calculate the loss function and perform training.

• On the development set, generate translations using greedy search. Look at them to see
if they look good or not. We will discuss how to evaluate them automatically next time.

Potential improvements to the model include: Implementing beam search. Implementing
an alternative encoder.
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