

HARVARD John A. Paulson School of Engineering and Applied Sciences

Analysis of NMT Systems

Yonatan Belinkov

Guest lecture

CMU CS 11-731: Machine Translation and Seq2seq Models 10/4/2018

Outline

- Non-neural statistical MT vs neural MT
 - Previous phrase-based MT
 - Opaqueness of NMT
 - Why analyze?
- Challenge sets
- Predicting linguistic properties
- Visualization
- Open questions

• Translate a source sentence *F* into a target sentence *E*

 $\hat{E} = \operatorname*{arg\,max}_{E} P(E|F)$

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \arg\max_{E} P(E|F) = \arg\max_{E} \frac{P(F|E)P(E)}{P(F)}$$

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \arg\max_{E} P(E|F) = \arg\max_{E} \frac{P(F|E)P(E)}{P(F)} = \arg\max_{E} P(F|E)P(E)$$

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \arg\max_{E} P(E|F) = \arg\max_{E} \frac{P(F|E)P(E)}{P(F)} = \arg\max_{E} P(F|E)P(E)$$

- P(F|E) Translation model
- P(E) Language model

• Translate a source sentence *F* into a target sentence *E*

From: Jurafsky & Martin 2009

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \underset{E}{\operatorname{arg\,max}} P(E|F) = \underset{E}{\operatorname{arg\,max}} \frac{P(F|E)P(E)}{P(F)} = \underset{E}{\operatorname{arg\,max}} P(F|E)P(E)$$
bofetada
Maria no dió una a la bruja verde
$$P(F|E) - \operatorname{Translation model}$$

$$P(E) - \operatorname{Language model}$$

$$\operatorname{Mary}$$

$$\operatorname{did}$$
not
$$\operatorname{slap}$$
the
$$\operatorname{green}$$
witch

From: Jurafsky & Martin 2009

Attention as soft alignment

Phrase-based MT

Attention as soft alignment

Neural MT

Phrase-based MT

• Translate a source sentence *F* into a target sentence *E*

$$\hat{E} = \underset{E}{\operatorname{arg\,max}} P(E|F) = \underset{E}{\operatorname{arg\,max}} \frac{P(F|E)P(E)}{P(F)} = \underset{E}{\operatorname{arg\,max}} P(F|E)P(E)$$

$$\stackrel{\text{bofetada}}{\operatorname{Maria no dió una}} a a a bruja verde$$

$$\bullet P(F|E) - \text{Translation model}$$

$$\bullet P(E) - \text{Language model}$$

$$\overset{\text{Mary}}{\operatorname{not}} a a a a a bruja a bruja bruj$$

From: Jurafsky & Martin 2009

• Translate a source sentence F into a target sentence E

$$\hat{E} = \underset{E}{\operatorname{arg\,max}} P(E|F) = \underset{E}{\operatorname{arg\,max}} \frac{P(F|E)P(E)}{P(F)} = \underset{E}{\operatorname{arg\,max}} P(F|E)P(E)$$
bofetada
$$Maria \text{ no dió una } a \text{ la bruja verde}$$

$$P(F|E) - \operatorname{Translation model}$$

$$P(E) - \operatorname{Language model}$$

$$Mary = did not$$

- Additional components
 - Word order, syntax, morphology
 - Etc.

From: Jurafsky & Martin 2009

End-to-End Learning: Machine Translation

[Figure: http://www.statmt.org/moses]

EndFtre-Brhack Barning

Why should we care?

- Current deep learning research
 - Much trial-and-error
 - Often a shot in the dark

 \succ Better understanding \rightarrow better systems

- Accountability, trust, and bias in machine learning
 - "Right to explanation", EU Regulation
 - Life-threatening situations: healthcare, autonomous cars

 \succ Better understanding \rightarrow more accountable systems

How can we move beyond BLEU?

Challenge Sets

- Carefully constructed examples
- Test specific linguistic properties
 - More informative than automatic metrics like BLEU scores
- Old tradition in NLP and MT (King & Falkedal 1990; Isahara 1995; Koh+ 2001)
 - Also known as "test suites"
- Now making a comeback in MT (and other NLP tasks)

Challenge Sets

	Phenomena	Languages	Size	Construction
Rios Gonzales+ 2017	WSD	German→English/French	13900	Semi-auto
Burlot & Ivon 2017	Morphology	English→Czech/Latvian	18500	Automatic
Sennrich 2017	Agreement, polarity, verb- particles, transliteration	English→German	97000	Automatic
Bawden+ 2018	Discourse	English→French	400	Manual
Isabelle+ 2017	Morpho-syntax, syntax, lexicon	English→French	506	Manual
Isabelle & Kuhn 2018	Morpho-syntax, syntax, lexicon	French→English	108	Manual
Burchardt+ 2018	Diverse (120)	English↔German	10000	Manual

Example: Manual Evaluation

- Isabelle et al. (2017)
 - 108 sentences to capture divergences between English and French
 - Get translations from phase-based and NMT systems
 - Ask human raters to answer questions about machine translations
 - Example:

Src	The repeated calls from his mother
	should have alerted us.
Ref	Les appels répétés de sa mère auraient
	dû nous alerter.
Sys	Les appels répétés de sa mère devraient
	nous avoir alertés.
Is the	e subject-verb agreement correct (y/n)? Yes

Example: Manual Evaluation

• Isabelle et al. (2017)

Divergence type	PBMT-1	PBMT-2	NMT	Google NMT
Morpho-syntactic	16%	16%	72%	65%
Lexico-syntactic	42%	46%	52%	62%
Syntactic	33%	33%	40%	75%
Overall	31%	32%	53%	68%
WMT BLEU	34.2	36.5	36.9	

- NMT better overall, but fails to capture many properties
- Example problems: agreement logic, noun compounds, control verbs, ...

Example: Automatic Evaluation

- Sennrich (2017)
 - Create contrastive translation pairs from existing parallel corpora
 - Apply heuristics to create wrong translations
 - Compare likelihood of wrong and correct translations

category	English	German (correct)	German (contrastive)
NP agreement	[] of the American Congress	[] des amerikanischen Kongresses	* [] der amerikanischen Kongresses
subject-verb agr.	[] that the plan will be approved	[], dass der Plan verabschiedet wird	* [], dass der Plan verabschiedet werden
separable verb particle	he is resting	er ruht sich aus	* er ruht sich an
polarity	the timing [] is uncertain	das Timing [] ist unsicher	das Timing [] ist sicher
transliteration	Mr. Ensign's office	Senator Ensigns Büro	Senator Enisgns Büro

Example: Automatic Evaluation

• Sennrich (2017)

	agree	ement	polarity (negation)			
system	noun phrase	subject-verb	verb particle	insertion	deletion	transliteration
(category and size \rightarrow)	21813	35105	2450	22760	4043	3490
BPE-to-BPE	95.6	93.4	91.1	97.9	91.5	96.1
BPE-to-char	93.9	91.2	88.0	98.5	88.4	98.6
char-to-char	93.9	91.5	86.7	98.5	89.3	98.3
(Sennrich et al., 2016a)	98.7	96.6	96.1	98.7	92.7	96.4
human	99.4	99.8	99.8	99.9	98.5	99.0

- Char decoders better on transliteration, but worse on verb particles and agreement (especially in distant words)
- Tradeoff between generalization to unseen words and sentence-level grammaticality

More Contrastive Translation Pairs

- Morphology (Burlot & Ivon 2017)
 - Apply morphological transformations with analyzers and generators
 - Filtering less likely sentences with a language model.
- Discourse (Bawden+ 2018)
 - Coreference and coherence
 - Manually modify existing examples
- Word sense disambiguation (Rios Gonzales+ 2017)
 - Search for ambiguous German words with distinct translations
 - Manually verify examples

Visualization

• Visualizing attention weights

Improved attention mechanisms

• "Structured Attention Networks" (Kim+ 2017)

Improved attention mechanisms

• "Fine-Grained Attention for NMT" (Choi+ 2018)

Improved attention mechanisms

- "Fine-Grained Attention for NMT" (Choi+ 2018)
- Visualizations of specific dimensions

What do these attentions do?

- "What does Attention in NMT pay attention to?" (Ghader & Monz 2017)
 - Comparing attention and alignment

- Also looked at correlations between attention and word prediction loss
- And which POS tags are most attended to

Visualization

- "Visualizing and Understanding NMT" (Ding+ 2017)
 - Adapt layer-wise relevance propagation (LRP) to the NMT case
 - Calculate association between hidden states and input/output

Figure 4: Visualizing source hidden states for a source content word "nian" (*years*).

Figure 8: Analyzing translation error: word repetition. The target word "history" occurs twice in the translation incorrectly.

Looking inside NMT

- Challenge sets give us overall performance, but not
 - what is happening inside the model
 - where linguistic information is stored
- Visualizations may show input/output/state correspondences, but
 - they are limited to specific examples
 - they are not connected to linguistic properties
- Can we investigate what linguistic information is captured in NMT?

Research Questions

- What is encoded in the intermediate representations?
- What is the effect of NMT design choices on learning language properties (morphology, syntax, semantics)?
 - Network depth
 - Encoder vs. decoder
 - Word representation
 - Effect of target language
 - ...

Methodology

- "Does String-Based Neural MT Learn Source Syntax" (Shi+ 2016)
- English→French, English→German
- Encoder-side representations
- Syntactic properties
 - Word-level: POS tags, smallest phrase constituent
 - Sentence-level: top-level syntactic sequence, voice, tense

Sentence-level tasks

- Auto-encoders learn poor representations (at majority class)
- NMT encoders learn much better representations

- All above majority baseline, but auto-encoder representations are worse
- First layer representations are slightly better

Generate full (linearized) trees from encodings

Model	Perplexity on Train	Perplexity on WSJ 22	Labeled F1 on WSJ23	# EVALB-trees (out of 2416)	Average TED per sentence	# Well-formed trees (out of 2416)
PE2PE2P	1.83	1.92	46.64	818	34.43	2416
E2E2P	1.69	1.77	59.35	796	31.25	2416
E2G2P	1.39	1.41	80.34	974	17.11	2340
E2F2P	1.36	1.38	79.27	1093	17.77	2415
E2P	1.11	1.18	89.61	2362	11.50	2415

• NMT encodings are much better (lower TED) than auto-encoders

• "What do NMT Models Learn about Morphology?" (Belinkov+ 2017)

• -

Tasks

- Part-of-speech tagging ("runs" = verb)
- Morphological tagging ("runs" = verb, present tense, 3rd person, singular)

• Languages

- Arabic-, German-, French-, and Czech-English
- Arabic-German (rich but different)
- Arabic-Hebrew (rich and similar)

	POS Ac	curacy	BLEU		
	Word	Word Char		Char	
Ar-En	89.62	95.35	24.7	28.4	
Ar-He	88.33	94.66	9.9	10.7	
De-En	93.54	94.63	29.6	30.4	
Fr-En	94.61	95.55	37.8	38.8	
Cz-En	75.71	79.10	23.2	25.4	

- Character-based models
 - Generate better representations for part-of-speech (and morphology)
 - Improve translation quality

• Impact of word frequency

• Does the **target language** affect source-side representations?

- Does the **target language** affect source-side representations?
- Experiment:
 - Fix source side and train NMT models on different target languages
 - Compare learned representations on part-of-speech/morphological tagging

- Source language: Arabic
- Target languages: English, German, Hebrew, Arabic

- Poorer target side morphology \rightarrow better source side representations
- Higher BLEU ≠ better representations

POS Accuracy by Representation Layer

- Layer 1 > Layer 2 > Layer 0
- But deeper models translate better \rightarrow what's in layer 2?

Lexical Semantics

- "Evaluating Layers of Representations in NMT on POS and Semantic Tagging" (Belinkov+ 2017)
- Questions
 - What is captured in higher layers?
 - How is semantic information represented?

- Lexical semantics
- Abstraction over POS tagging
- Language-neutral, designed for multi-lingual semantic parsing

- Lexical semantics
- Abstraction over POS tagging
- Language-neutral, designed for multi-lingual semantic parsing
- Some examples
 - Determiners: every, no, some
 - Comma as conjunction, disjunction, apposition
 - Proper nouns: organization, location, person, etc.
 - Role nouns, entity nouns

- Lexical semantics
- Abstraction over POS tagging
- Language-neutral, designed for multi-lingual semantic parsing
- Some examples
 - "Sarah bought *herself* a book"
 - "Sarah herself bought a book"
 - *herself* same POS tag but different SEM tags

- Layer 0 below baseline
- Layer 1 >> layer 0
- Layer 4 > layer 1

- Layer 0 below baseline
- Layer 1 >> layer 0
- Layer 4 > layer 1
- Similar trends for coarse tags

- Layer 4 vs layer 1
- Blue: distinguishing among coarse tags
- Red: distinguishing among fine-grained tags within a coarse category

- Layer 4 > layer 1
- Especially with:
 - Discourse relations (DIS)
 - Properties of nouns (ENT)
 - Events, tenses (EVE, TNS)
 - Logic relations and quantifiers (LOG)
 - Comparative constructions (COM)

Difference between Layer 4 F1 and Layer 1 F1

- Negative examples
- Modality (MOD)
 - Closed-class ("no", "not", "should", "must", etc.)
- Named entities (NAM)
 - 00Vs?
 - Neural MT limitation?

Difference between Layer 4 F1 and Layer 1 F1

SEM tags vs. POS tags

SEM tags vs. POS tags

	0	1	2	3	4
POS	87.9	92.0	91.7	91.8	91.9
SEM	81.8	87.8	87.4	87.6	88.2

- Higher layers improve SEM tagging but not POS tagging
- Layer 1 best for POS; layer 4 best for SEM tagging

SEM tags vs. POS tags

		0	1	2	3	4
Uni	POS	87.9	92.0	91.7	91.8	91.9
	SEM	81.8	87.8	87.4	87.6	88.2
Bi	POS	87.9	93.3	92.9	93.2	92.8
	SEM	81.9	91.3	90.8	91.9	91.9

- Higher layers improve SEM tagging but not POS tagging
- Layer 1 best for POS; layer 4 best for SEM tagging
- Similar trends with bidirectional encoder

Dependencies

Dependencies

- Problem definition
 - Given two words, identify their relation
 - Train a classifier on NMT representations

- Datasets
 - Syntax: Universal Dependencies (v2.0)
 - Semantics: Semantic Dependency parsing (Oepen+ 14-15)
 - MT data: UN corpus
 - Languages: Arabic, English, Spanish, French, Russian, Chinese

Syntactic Dependencies

Syntactic Dependencies

Specific Syntactic Relations

Most improvement in high layers

Least improvement

Effect of Distance

Semantic Dependencies

Open Questions

- Are individual dimensions in the vector representations meaningful?
 - We have some positive results (more on this later today)
- How much does NMT rely on the linguistic properties?
 - Can predict tense from NMT encodings at 90%, but NMT translations have correct tense only at 79% (Vanmassenhove+ 2017)
 - BLEU and sentence classification accuracy are in opposition (Cífka & Boyar 2018)
- NMT failures with adversarial examples
 - Black-box attacks (Belinkov & Bisk 2018; Higold+ 2018; Zhao+ 2018)
 - White-box attacks (Ebrahimi+ 2018; Cheng+ 2018)

Summary

- Neural MT representations contain useful information about morphology, syntax, and semantics
- Hierarchy of representations
 - Lower layers focus on local, short-distance properties (morphology)
 - Higher layers focus on global, long-distance properties (syntax, semantics)