Rule-Based MT, including Knowledge-Based MT (KBMT)

11-731 MT and Seq2Seq Models Robert Frederking 13 September 2018

MT History

• Did not start with IBM Model 1 Statistical MT

MT history

- 1933 Patents in France and Russia for mechanical translation devices
- 1940s WW2 code breaking efforts
- 1947 Weaver letter outlining translation as a problem in cryptography
- 1954 Georgetown Experiments showed "promise" of Russian-English MT
- 1966 ALPAC report shifts funding to basic research in computational linguistics
- 1968 MT company SYSTRAN founded (still in existence)
- 1970s advances in formal languages and automata theory; development of *statistical speech recognition* techniques at IBM and Princeton and CMU
- 1985 CMU's Center for Machine Translation founded
- 1980s Domain-specific MT developed, Speech-to-speech MT begun
- 1993 Weaver's model of translation prototyped by IBM; statistical revolution
- 1996 Center for Machine Translation becomes LTI
- 1999 Open source reimplementation of IBM statistical models
- 2000s Major modeling improvements, rediscovery of syntax, large scale funding
- 2006 Google Translate launches
- 2010 SDL (translation company) acquires Language Weaver (MT company)
- 2015 Amazon acquires Safaba (Lavie), which becomes Amazon Pittsburgh

State-of-the-Art in MT:

- What users really want:
 - General purpose (any text)
 - High quality (human level)
 - Fully automatic (no user intervention)
- We can meet any 2 of these 3 goals today, but not all three at once!

State-of-the-Art in MT:

- What users want:
 - General purpose (any text)
 - High quality (human level)
 - Fully automatic (no user intervention)
- We can meet any 2 of these 3 goals today, but not all three at once:
 - FA HQ: Knowledge-Based MT (KBMT)
 - FA GP: Corpus-Based (NMT/SMT/EBMT) MT
 - GP HQ: Human-in-the-loop (efficiency tool)

Central Problems of MT:

• Ambiguity:

Human languages are highly ambiguous, and differently in different languages.

Amount of knowledge:

- At least several 100k words, about as many phrases, plus syntactic knowledge. How do you make a knowledgebase that big that is (even mostly) correct and consistent?
- Syntactic complexity not as big an issue!

MT: math or application?

- Research funding is now almost all SMT or NMT
- If your interest is MT as a real-world application, many other issues come up:
 - Application types
 - Human translators
 - Human factors
 - User support
 - etc...

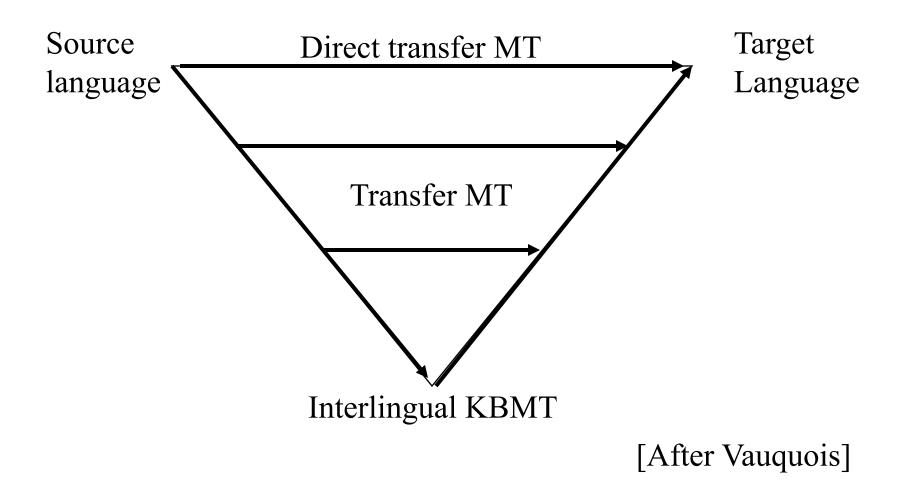
MT: math or application?

- Research funding is now almost all SMT or NMT
- If your interest is MT as a real-world application, many other issues come up:
 - Application types
 - Human translators
 - Human factors
 - User support
 - etc...

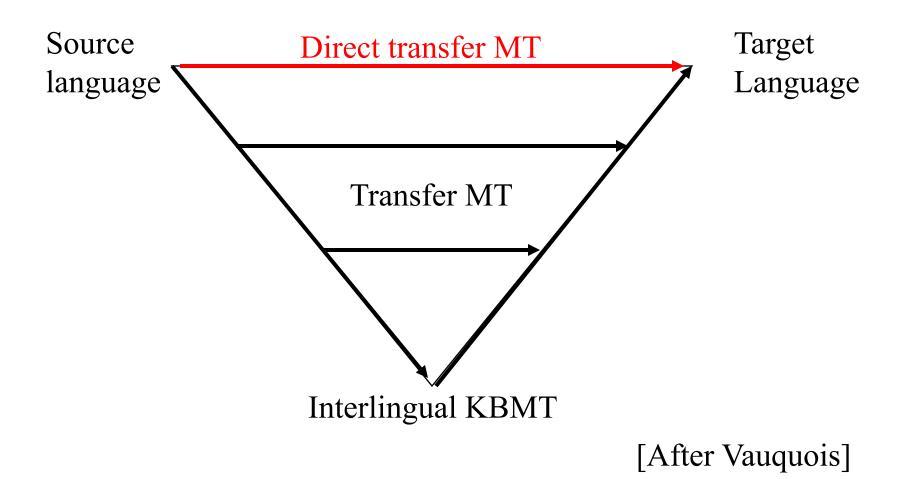
Types of MT Applications:

- Assimilation: multiple source languages, uncontrolled style/topic. General purpose MT, no semantic analysis. (GP FA or GP HQ)
- **Dissemination**: one source language, controlled style, single topic/domain. Special purpose MT, full semantic analysis. (FA HQ)
- **Communication**: Lower quality may be okay, but degraded input, real-time required.

LTI's MT History


- High-Accuracy Interlingual MT
 - KANT: large-scale, practical MT for technical documentation
 - First high-accuracy text MT
- Speech-to-speech MT
 - JANUS/Nespole!/LingWear/DIPLOMAT/Tongues/Babylon/ TransTac:
 - First speech-speech MT (JANUS)
 - Jibbigo bought by Facebook
- Parallel Corpus-Trainable MT
 - Statistical MT
 - Example-Based MT (\rightarrow Phrase-Based SMT)

LTI's MT History (cont.)


- Multi-Engine MT: first MT ensemble approach
- METEOR MT metric: best fit to human judges
- MT-related systems:
 - First high-accuracy translingual IR
- Endangered Language MT:
 - First minority-language MT (DIPLOMAT)
 - AVENUE, ..., LORELEI
- Spin-off companies: (besides Jibbigo)

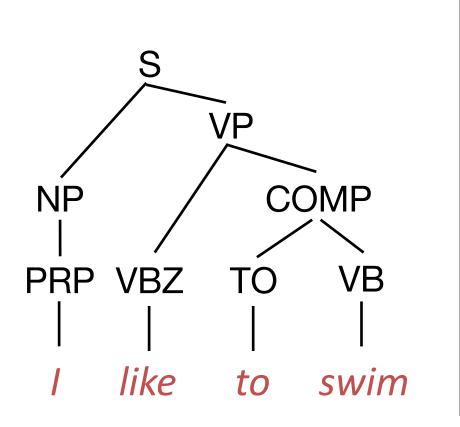
– Safaba bought by Amazon (now Amazon Pgh!)

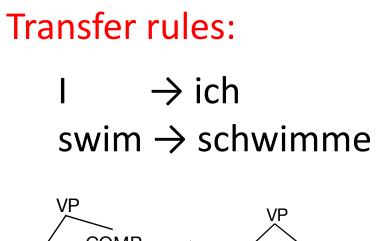
Types of MT technologies

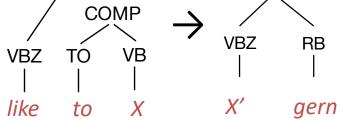

Types of MT technologies

Direct transfer MT

- Earliest approach to MT
- *Huge* dictionaries of bilingual phrase pairs
- Heuristics to pick among ambiguous choices
- Could also add semantic fields, kitchen sink
- But lots of tricky cases ("divergences"):
 I like to swim → *Ich schwimme gern*

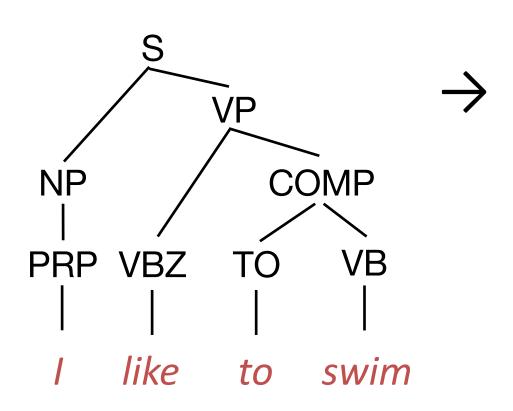

Types of MT technologies

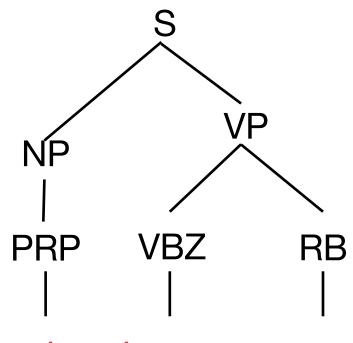



Syntactic Transfer MT

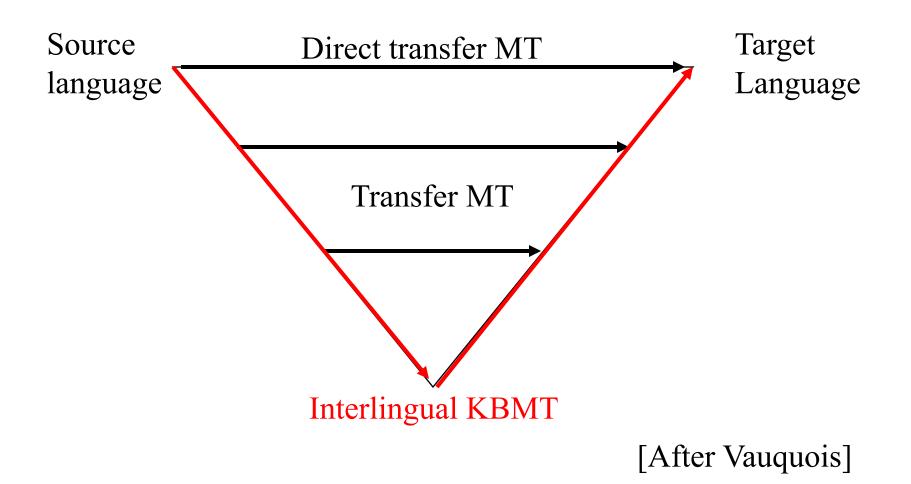
- Basic idea:
 - analyze a Source Language sentence to get the syntactic structure,
 - apply transfer rules to convert SL syntax into TL syntax
 - then generate a Target Language sentence that respects TL syntactic constraints, inserting TL lexical items

Syntactic Transfer MT



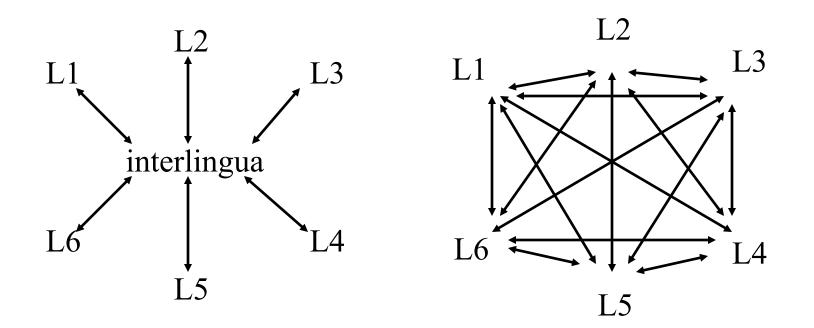


I like to swim \rightarrow Ich schwimme gern


Syntactic Transfer MT

Ich schwimme gern

Types of MT technologies



Knowledge-based Interlingual MT

- The "obvious" Artificial Intelligence approach to MT:
 - Analyze the input language to find the meaning
 - Generate this meaning in the output language
- "Interlingual": one meaning representation for all languages
 - May or may not be possible in general!

The Interlingua KBMT approach:

 With interlingua, need only N parsers/ generators instead of N² transfer systems:

Knowledge-Based MT (KBMT)

- Basic KBMT idea:
 - analyze a Source Language sentence to get the meaning,
 - then generate a Target Language sentence that expresses that *meaning*
- Hmm: so how do you represent sentence meanings?

Representing NL meaning

 Fortunately, there has been a lot of work on this (since Aristotle, at least)

– Panini in India too

- Especially, formal mathematical logic since 1850s (!), starting with George Boole etc.
 - Wanted to replace NL proofs with something more formal
- Deep connections to set theory

Model-Theoretic Semantics

- Model: a simplified representation of (some part of) the world: sets of objects, properties, relations (domain).
- Logical vocabulary: like reserved words in PL
- Non-logical vocabulary
 - Each element denotes (maps to) a well-defined part of the model
 - Such a mapping is called an **interpretation**

A Model

- **Domain**: Noah, Karen, Rebecca, Frederick, Green Mango, Casbah, Udipi, Thai, Mediterranean, Indian
- **Properties**: Green Mango and Udipi are crowded; Casbah is expensive
- **Relations**: Karen likes Green Mango, Frederick likes Casbah, everyone likes Udipi, Green Mango serves Thai, Casbah serves Mediterranean, and Udipi serves Indian
- n, k, r, f, g, c, u, t, m, i
- Crowded = {g, u}
- Expensive = {c}
- Likes = {(k, g), (f, c), (n, u), (k, u), (r, u), (f, u)}
- Serves = {(g, t), (c, m), (u, i)}

Some English

- Karen likes Green Mango and Frederick likes Casbah.
- Noah and Rebecca like the same restaurants.
- Noah likes expensive restaurants.
- Not everybody likes Green Mango.
- What we want is to be able to represent these statements in a way that lets us compare them to our model.
- **Truth-conditional semantics**: need operators and their meanings, given a particular model.

First-Order Logic

• Terms refer to elements of the domain: constants, functions, and variables

– Noah, SpouseOf(Karen), X

- Predicates are used to refer to sets and relations; predicate applied to a term is a Proposition
 - Expensive(Casbah)
 - Serves(Casbah, Mediterranean)
- Logical connectives (**operators**):

∧ (and), ∨ (or), ¬ (not), \Rightarrow (implies), ...

• Quantifiers ...

Quantifiers in FOL

- Two ways to use variables:
 - refer to one anonymous object from the domain (existential; ∃; "there exists")
 - refer to all objects in the domain (universal; ∀; "for all")
- A restaurant near CMU serves Indian food ∃x Restaurant(x) ∧ Near(x, CMU) ∧ Serves(x, Indian)
- All expensive restaurants are far from campus
 ∀x Restaurant(x) ∧ Expensive(x) ⇒ ¬Near(x, CMU)

FOL: Meta-theory

- Well-defined set-theoretic semantics
- Sound: can't prove false things
- **Complete:** can prove everything that logically follows from a set of axioms (e.g., with "resolution theorem prover")
- Well-behaved, well-understood
- Mission accomplished?

FOL: But there are also "Issues"

- "Meanings" of sentences are *truth values*.
- Only *first-order* (no quantifying over *predicates* [which the book does without comment]).
- Not very good for *"fluents"* (time-varying things, real-valued quantities, etc.)
- Brittle: *anything* follows from *any* contradiction(!)
- Goedel incompleteness: "This statement has no proof"!

• What is the meaning of "Gift"?

What is the meaning of "Gift"?
 – English: a present

- What is the meaning of "Gift"?
 - English: a present
 - German: a poison

- What is the meaning of "Gift"?
 - English: a present
 - German: a poison
 - (Both come from the word "give/geben"!)
- Logic is complete for statements that are true in *every* interpretation
 - but incomplete for statements needed to describe arithmetic

FOL: But there are also "Issues"

- "Meanings" of sentences are *truth values*.
- Only *first-order* (no quantifying over *predicates* [which the book does without comment]).
- Not very good for *"fluents"* (time-varying things, real-valued quantities, etc.)
- Brittle: *anything* follows from *any* contradiction(!)
- Goedel incompleteness: "This statement has no proof"!
 (Finite axiom sets are incomplete w.r.t. the real world.)
- So: Most systems use its descriptive apparatus (with extensions) but not its inference mechanisms.

Extending FOL

- To handle sentences in non-mathematical texts, you need to cope with additional NL phenomena
- Happily, philosophers/logicians have thought about this too

Generalized Quantifiers

- In FOL, we only have universal and existential quantifiers
- One formal extension is type-restriction of the quantified variable: *Everyone likes Udipi*:

 $\forall x \operatorname{Person}(x) \Rightarrow \operatorname{Likes}(x, \operatorname{Udipi})$ becomes $\forall x \mid \operatorname{Person}(x).\operatorname{Likes}(x, \operatorname{Udipi})$

- English and other languages have a much larger set of quantifiers: *all, some, most, many, a few, the, ...*
- These have the same form as the original FOL quantifiers with type restrictions:
 <quant><var>|<restriction>.<body>

Generalized Quantifier examples

- Most dogs bark
 Most x | Dog(x) . Barks(x)
- Most barking things are dogs
 Most x | Barks(x) . Dog(x)
- The dog barks
 The x | Dog(x) . Barks(x)
- The happy dog barks
 The x | (Happy(x) ∧ Dog(x)) . Barks(x)
- Interpretation and inference using these are harder...

Semantic Cases/Thematic Roles

 Another aspect of semantics not represented in traditional FOL

- Developed in late 1960's and 1970's
- Postulate a limited set of abstract semantic relationships between a verb & its arguments: <u>thematic roles</u> or <u>case roles</u>

Thematic Role example

- John broke the window with the hammer
- John: AGENT role window: THEME role hammer: INSTRUMENT role
- Extend LF notation to use semantic roles

Can We Generalize?

- Thematic roles describe general patterns of participants in generic events.
- This gives us a kind of shallow, partial semantic representation.
- First proposed by Panini, before 400 BC!

Thematic Roles

Role	Definition	Example
Agent	Volitional causer of the event	The waiter spilled the soup.
Force	Non-volitional causer of the event	The wind blew the leaves around.
Experiencer		Mary has a headache.
Theme	Most directly affected participant	Mary swallowed the pill .
Result	End-product of an event	We constructed a new building .
Content	Proposition of a propositional event	Mary knows you hate her .
Instrument		You shot her with a pistol .
Beneficiary		I made you a reservation.
Source	Origin of a transferred thing	I flew in from Pittsburgh .
Goal	Destination of a transferred thing	Go to hell !

Verb Subcategorization

Verbs have sets of allowed args. Could have many sets of VP rules. Instead, have a SUBCAT feature, marking sets of allowed arguments:

+none -- Jack laughed

+np -- Jack found a key

+np+np -- Jack gave Sue the paper

+vp:inf -- Jack wants to fly

+np+vp:inf -- Jack told the man to go +vp:ing -- Jack keeps hoping for the best

+np+vp:ing -- Jack caught Sam looking at his desk

+np+vp:base -- Jack watched Sam look at his desk

+np+pp:to -- Jack gave the key to the man

+pp:loc -- Jack is at the store +np+pp:loc -- Jack put the box in the corner

+pp:mot -- Jack went to the store +np+pp:mot -- Jack took the hat to

the party

+adjp -- Jack is happy

+np+adjp -- Jack kept the dinner hot

+sthat -- Jack believed that the world was flat

+sfor -- Jack hoped for the man to win a prize

50-100 possible *frames* for English; a single verb can have several. (Notation from James Allen "Natural Language Understanding")

Thematic Grid or Case Frame

• Example: break

– The child broke the vase. < agent theme > subj obj

- The child broke the vase with a hammer.
 - < agent theme instr >
 - subj obj PP
- The hammer broke the vase. < theme instr > obj subj
- The vase broke.

< theme > subj

Thematic Grid or Case Frame

• Example: break

– The child broke the vase. < agent theme > subj obj

- The child broke the vase with a hammer.
 - < agent theme instr >
 - subj obj PP
- The hammer broke the vase. < theme instr > obj subj

The vase broke.

The Thematic Grid or Case Frame shows

- How many arguments the verb has
- What roles the arguments have
- Where to find each argument
 - For example, you can find the agent in the subject position

< theme > subj

Diathesis Alternation:

a change in the number of arguments or the grammatical relations associated with each argument

- Chris gave a book to Dana.
- A book was given to Dana by Chris.
- Chris gave Dana a book.
- Dana was given a book by Chris.

- < agent theme goal > subj obj PP
- < agent theme goal > PP subj PP
- < agent theme goal > subj obj2 obj
- < agent theme goal > PP obj subj

Speech Acts

- Mood of a sentence indicates relation between speaker and the concept (proposition) defined by the LF
- There can be operators that represent these relations:
 - ASSERT: the proposition is proposed as a fact
 - YN-QUERY: the truth of the proposition is queried
 - COMMAND: the proposition describes a requested action
 - WH-QUERY: the proposition describes an object to be identified

ASSERT (Declarative mood)

• The man ate a peach

ASSERT(The x | Man(x) . (A y | Peach(y) . Eat(x,y)))

YN-QUERY (Interrogative mood)

• Did the man eat a peach?

YN-QUERY(The x | Man(x) . (A y | Peach(y) . Eat(x,y)))

COMMAND (Imperative mood)

• Eat a peach, (man).

COMMAND(A y | Peach(y) . Eat(*HEARER*,y))

WH-QUERY

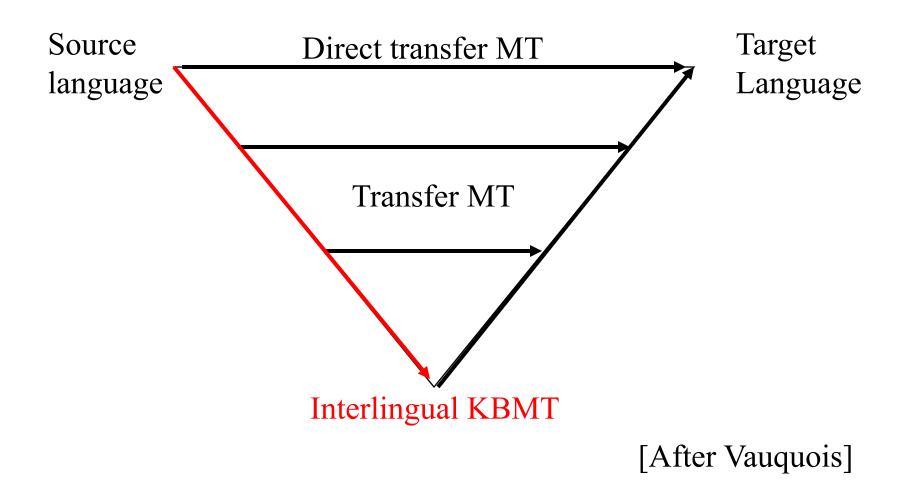
- What did the man eat?
 WH-QUERY(The x | Man(x). (WH y | Thing(y). Eat(x,y)))
- One of a whole set of new quantifiers for whquestions:
 - What: WH x | Thing(x)
 - Which dog: WH x | Dog(x)
 - *Who*: WH x | Person(x)
 - *How many men*: HOW-MANY x | Man(x)

Embedded Sentences

• The man who ate a peach left

(ASSERT (LEAVE [AGENT (THE m1 | MAN(m1). (EAT [AGENT m1] [THEME (A p1 | PEACH(p1))]))]))

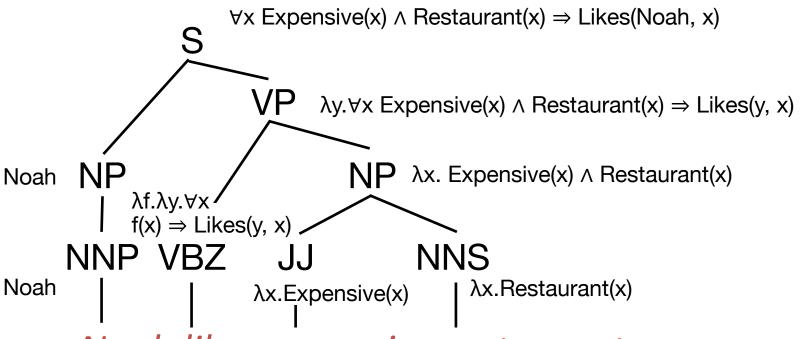
Other complications


- Modal verbs: non-transparency for truth of subordinate clause: *Sue thinks that John loves Sandy*
- Tense/Aspect
- Plurality
- Etc.

• You can take this too far...

Knowledge-Based MT (KBMT)

- Basic KBMT idea:
 - *analyze* a Source Language sentence to get the meaning,
 - then generate a Target Language sentence that expresses that *meaning*

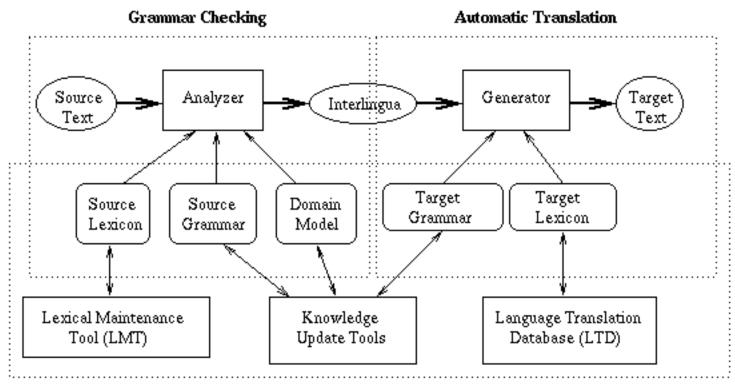

Types of MT technologies

Analyzing NL into meaning

- First, syntactic analysis.
- Then, assign meaning in syntax-directed fashion.

Connecting FOPC to Syntax

- Noah likes expensive restaurants.
- ∀x Restaurant(x) ∧ Expensive(x) ⇒ Likes(Noah, x)


Analyzing NL into meaning

- First, syntactic analysis.
- Then, assign meaning in syntax-directed fashion.
 - Interleaving generally a very good idea
- For MT, don't need to worry about *grounding*.
 You *would* if you were talking to a robot.
- Can also ignore many discourse issues. Eg, assume pronouns just translate as pronouns.

CMU KANT system

- Produced Catalyst system for Caterpillar
 Bulldozer manuals in N languages
- Controlled input language
 - Checker/disambiguator, incl domain semantics
- Tomita parser
- LFG-like grammar, pseudo-unification
- Achieved human level translation!
 - (Many people don't realize there ever was a successful KBMT system)

KANTOO system diagram

System Update / Maintenance

The KANT Interlingua

- Explicit word senses represented as single terms
- No generalized quantifiers (represented as features)
- Otherwise, very similar to the LF event notation with semantic roles
- (Demonstration)

One of the most successful of these institutions is BancoSol in Bolivia.

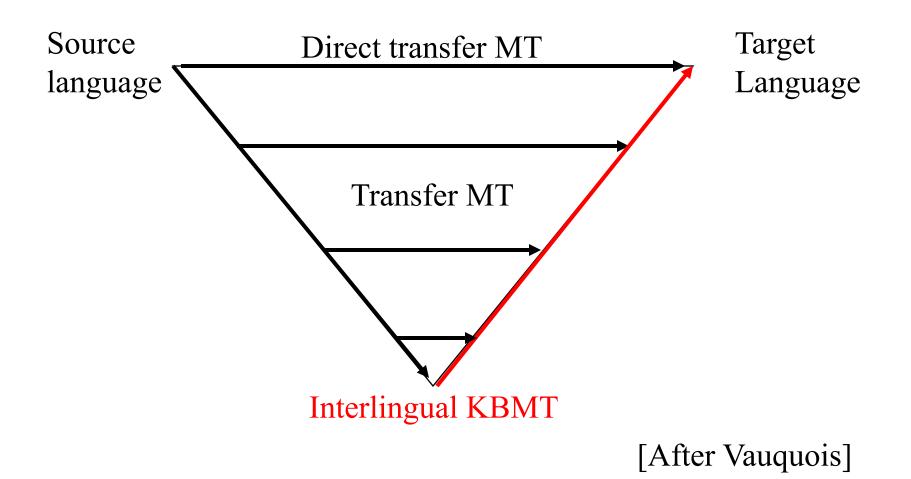
```
( *A-BE
   (FORM FINITE)
   (TENSE PRESENT)
   (MOOD DECLARATIVE)
   (PUNCTUATION PERIOD)
   (IMPERSONAL -)
   (THEME
      (*G-PARTITIVE
         (SUBSTANCE
            (*G-PARTITIVE
                 (SUBSTANCE
                    (*O-INSTITUTION
                        (UNIT -)
                        (NUMBER PLURAL)
                        (REFERENCE DEFINITE)
                        (DISTANCE NEAR)
                        (PERSON THIRD)))
                 (ADJECTIVE
                    (*P-SUCCESSFUL
                        (DEGREE SUPERLATIVE)))))
         (QUANTIFIER (*QUANT-ONE))))
   (PREDICATE
      (*PROP-BANCOSOL
         (NUMBER SINGULAR)
         (IMPLIED-REFERENCE +)
         (PERSON THIRD)
         (UNIT -)
         (Q-MODIFIER
            (*K-IN
                (OBJECT
                   (*PROP-BOLIVIA
                      (UNIT -)
                      (NUMBER SINGULAR)
                      (IMPLIED-REFERENCE +)
                      (PERSON THIRD))))))))))
```

ACCION International is a U.S.-based private non-profit organization that currently provides technical assistance to a network of institutions in thirteen countries in Latin America and six cities in the United States.

```
(*A-BE
   (FORM FINITE)
   (TENSE PRESENT)
   (MOOD DECLARATIVE)
   (PUNCTUATION PERIOD)
   (IMPERSONAL -)
   (THEME
      (*PN-ACCION-INTERNATIONAL
         (NUMBER SINGULAR)
         (IMPLIED-REFERENCE +)
         (PERSON THIRD)
         (UNIT -)))
   (PREDICATE
      (*O-ORGANIZATION
         (UNIT -)
         (NUMBER SINGULAR)
         (REFERENCE INDEFINITE)
         (PERSON THIRD)
         (REL-QUAL
            (*G-QUALIFYING-EVENT
               (EVENT
                   (*A-PROVIDE
                      (MISSING-VERB -)
                      (FORM FINITE)
                      (TENSE PRESENT)
                      (MOOD DECLARATIVE)
                      (IMPERSONAL -)
                      (ARGUMENT-CLASS AGENT+THEME+RECIPIENT)
                      (MANNER
                         (*M-CURRENTLY
                            (POSITION PREVERBAL)
                            (UNIT -)
                            (DEGREE POSITIVE)))
                      (RECIPIENT
                            (*O-NETWORK
                               (UNIT -)
                               (NUMBER SINGULAR)
                               (REFERENCE INDEFINITE)
                               (PERSON THIRD)
                               (Q-MODIFIER
                                  (*K-OF
                                      (OBJECT
```

```
(DEGREE TODITION)))
(RECIPIENT
      (*O-NETWORK
         (UNIT -)
         (NUMBER SINGULAR)
         (REFERENCE INDEFINITE)
         (PERSON THIRD)
         (Q-MODIFIER
            (*K-OF
               (OBJECT
                  (*O-INSTITUTION
                      (UNIT -)
                      (NUMBER PLURAL)
                      (REFERENCE NO-REFERENCE)
                      (PERSON THIRD)
                      (Q-MODIFIER
                         (*K-IN
                            (OBJECT
                               (*G-COORDINATION
                                  (UNIT -)
                                  (PERSON THIRD)
                                  (NUMBER PLURAL)
                                  (REFERENCE NO-REFERENCE)
                                   (CONJUNCTION (*CONJ-AND))
                                  (CONJUNCTS
                                     (:MULTIPLE
                                         (*O-COUNTRY
                                            (NUMBER PLURAL)
                                            (UNIT -)
                                            (PERSON THIRD)
                                            (IMPLIED-REFERENCE +)
                                            (Q-MODIFIER
                                               (*K-IN
                                                  (OBJECT
                                                      (*PROP-LATIN-AMERICA
                                                         (UNIT -)
                                                         (NUMBER SINGULAR)
                                                         (IMPLIED-REFERENCE +)
                                                         (PERSON THIRD)))))
                                            (QUANTITY
                                               (*C-DECIMAL-NUMBER
                                                  (INTEGER "13")
                                                  (NUMBER-FORM ALPHABETIC)
                                                  (NUMBER-TYPE CARDINAL))))
```

(+O OTHY


```
(QUANTITY
                                                        (*C-DECIMAL-NUMBER
                                                           (INTEGER "13")
                                                           (NUMBER-FORM ALPHABETIC)
                                                           (NUMBER-TYPE CARDINAL))))
                                                   (*O-CITY
                                                     (NUMBER PLURAL)
                                                     (UNIT -)
                                                     (PERSON THIRD)
                                                     (IMPLIED-REFERENCE +)
                                                      (Q-MODIFIER
                                                        (*K-IN
                                                           (OBJECT
                                                              (*PROP-UNITED-STATES
                                                                  (UNIT -)
                                                                  (NUMBER SINGULAR)
                                                                  (REFERENCE DEFINITE)
                                                                  (PERSON THIRD)))))
                                                      (OUANTITY
                                                        (*C-DECIMAL-NUMBER
                                                           (INTEGER "6")
                                                           (NUMBER-FORM ALPHABETIC)
                                                           (THEME
              (*O-ASSISTANCE
                  (UNIT -)
                 (NUMBER SINGULAR)
                  (REFERENCE NO-REFERENCE)
                 (PERSON THIRD)
                 (ATTRIBUTE
                     (*P-TECHNICAL
                       (DEGREE POSITIVE)))))
            (AGENT
              (*G-GAPPED-ARGUMENT
                 (GAPPED +)))))
     (EXTENT (*REL-THAT))))
(ATTRIBUTE
  (*G-COORDINATION
     (CONJUNCTION NULL)
     (CONJUNCTS
         (:MULTIPLE
           (*P-US-BASED (DEGREE
             POSITIVE))
           (*P-PRIVATE (DEGREE
             POSITIVE))
           (*P-NON-PROFIT (DEGREE
```

POSITIVE))))))))))

Knowledge-Based MT (KBMT)

- Basic KBMT idea:
 - analyze a Source Language sentence to get the meaning,
 - then *generate* a Target Language sentence that expresses that *meaning*

Types of MT technologies

Generating NL from meaning

- Not trivial, but not as hard as parsing/ interpretation (if meaning representation welldesigned)
- Inference is needed due to divergences at semantic level, but does *not* use logical axioms and formal implication
- MT can again mostly avoid some major issues
 - Content selection
 - Discourse coherence

Generating from meaning

- Need to express content while obeying linguistic constraints
- A form of planning, vs. analysis
 - Backtracking may be necessary, if linguistic constraints become unsatisfiable

NLG for KBMT

- Template-based generators
 - Weather reports?
- CGI LanguageCraft generator

Case-frame based representation

- CMU KANT GenKit generator
 - LFG-like syntax, frame-style semantics
- ISI Pangloss Penman generator

– Systemic grammar, planner in LISP

Using Case frames for NLG:

• Example: break

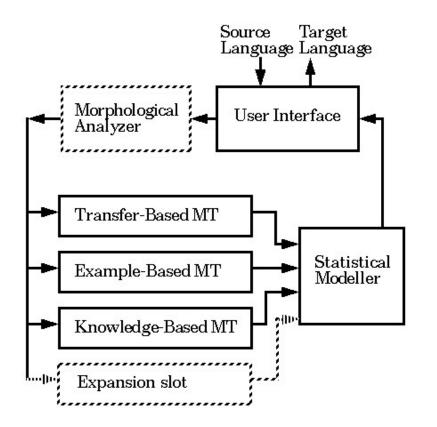
– The child broke the vase. < agent theme > subj obj

- The child broke the vase with a hammer.
 - < agent theme instr >
 - subj obj PP
- The hammer broke the vase. < theme instr > obj subj

The vase broke.

The Thematic Grid or Case Frame shows

- How many arguments the verb has
- What roles the arguments have
- Where to find each argument
 - For example, you can find the agent in the subject position


< theme > subj

Issues with KBMT

- Only really possible in limited domains
 But not necessarily trivial ones
- Knowledge engineering is very expensive

- Interlingua: not clear that a universal interlingua is actually possible
 - But it doesn't really have to be universal in practice

Multi-Engine MT

- Apply several MT engines to each input; use statistical language modeller to select best combination of outputs.
- Goal is to combine strengths, and avoid weaknesses.
- Along all dimensions: domain limits, quality, development time/cost, run-time speed, etc.
- Used in Diplomat, Tongues, LingWear, Nespole, NICE, etc.

Example MEMT "chart"

El punto de descarge	se cumplirá en	el puente Agua Fria
The drop-off point	will comply with	The cold Bridgewater
El punto de descarge	se cumplirá en	el puente Agua Fria
The discharge point	will self comply in	the "Agua Fria" bridge
El punto de descarge	se cumplirá en	el puente Agua Fria
Unload of the point	will take place at	the cold water of bridge

Current RBMT/KBMT

- Still used in industry, especially where highprecision domain-specific MT is needed
- No research funding

 But note that "statistical" MT systems often include rule-based components, esp. morphology

Questions?