Carnegie Mellon University Machine Translation and Sequence-to-sequence Models

Machine Translation and

Sequence-to-sequence
Models

http://phontron.com/class/mtandseqg2seq2018/

Graham Neubig

_._ Carnegie Mellon University
» CS 11-731 1



Carnegie Mellon University Machine Translation and Sequence-to-sequence Models

What is Machine Translation?

kare wa ringo wo tabeta .

He ate an apple .
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What are

Sequence-to-sequence Models?
Sequence-to-sequence Models

4 Machine translation: A

kare wa ringo wo tabeta - he ate an apple
Tagqging:

he ate an apple -~ PRN VBD DET PP
Dialoqg:

he ate an apple - good, he needs to slim down
Speech Recognition

—~Hmtiiwi— . Ne ate an apple
And Just about anything...:

\1010000111101 - 00011010001101 )
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Why MT as a Representative?

I Global MT Market
Useful! Expected To Reach $983.3
KUSHINIKIZA! Google Translate SAVES BABY in Million by 2022
Irish roadside birth

Do no evil? We literally save lives now

13 Feb 2015 at 12:01, John Leyden & o o @ 8

Quick—thinking Irish paramedics turned to GUUgle Translate to communicate with a pregnant woman who
spoke Swahili, allowing her to safely give birth. 212 2013 ZM4 2015 2016 2MF 2018 2018 Z020 2021 2022

Source The Reglster ® ALtormothee mhilitary & Defense :gtehc;rr:nics

u|T = H ealthcare

Source: Grand View Research

Imperfect...

Korean Chinese English Detect language - ""... English Japanese Spanish - Translate
Eg|O[L} H|O|HE E2 AZHO|L7tL * | Baker yinikkayo tray or a good man

A L DI T E A < # Suggest an edit
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MT and Machine Learning

Blg Data! silions of words for major languages
... but little for others

Well-defined, Difficult Problem!

Use for algorithms, math, etc.

Algorithms Widely Applicable!
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MT and Linguistics

Eg[o|} H]o]7

= Fo AglelIt R

Baker|yinikkayo

tray|or a good|man

Trina Baked

Morphology! <1y

is

a good person

2 is avariant of ©|t} (to be)

Syntax! should keep subject together
Semantics! “rrina”is probably not a man...
... and so much more! ;
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Class Organization
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Class Format

« Before class:

* Read the assigned material

* Ask questions via web (piazza/email)
* In class:

* Take a small quiz about material

* Discussion, questions, elaboration
* Pseudo-code walk
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Assignments

 Assignment 1: Create a neural
seguence-to-sequence modeling system.
Turn in code to run it, and write a report.

* Assighment 2: Create a system for a
challenge task, to be decided in class.

* Final project: Come up with an
interesting new idea and test it.
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Assignment Instructions

* Work in groups of 2-3.

* Use a shared git repository and commit the code that
you write, and in reports note who did what part of the
project.

* All implementations must be basically your own,
although you can use small code snippets.

* We recommend implementing in Python, using DyNet
or PyTorch as your neural network library.

10
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Class Grading

 Short quizzes: 20%
 Assignment 1: 20%
* Assignment 2: 20%
* Final Project: 40%

11



Carnegie Mellon University Machine Translation and Sequence-to-sequence Models

Class Plan

. Introduction (Today): 1 class

. Language Models: 3 classes

. Neural MT: 3 classes

. Evaluation/Analysis: 2 classes

. Applications: 2 classes

. Symbolic MT: 3 classes

. Advanced Topics: 11 classes

. Final Project Presentations: 2 classes

ONOIT A~ WWN -

12
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Guest Lectures

* Bob Frederking (9/13):
Rule/Knowledge-based Translation

* Bhiksha Raj (11/27):
Speech Applications

13
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Models for
Machine Translation

14
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Machine Learning for
Machine Translation

F = kare wa ringo wo tabeta .

'

E= He ate an apple .

Probablility model: P(E|F,©)
A

Parameters

15
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Problems in MT

* Modeling: How do we define P(E|F;©)?
* Learning: How do we learn 97

* Search: Given F, how do we find the
highest scoring translation?

E'=argmax_P(E|F,0)

e Evaluation: Given E'and a human
reference E, how do we determine how
good E'is?

16
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Part 1: Neural Models

17
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Language Models 1: n-gram
Language Models

E, = he ate an apple

Given multiple candidates,
which is most likely as

an English sentence? E_ = he insulted an apple
E, = preliminary orange orange

E, = he ate an apples

* Definition of language modeling

* Count-based n-gram language models

* Evaluating language models

* Code Example: n-gram language model

18
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Language Models 2: Log-linear/Feed-
forward Language Models

— —_ —_— el
a / 3.0\ /-6.0\ /-0.2) /-3.2)
the 2.5 5.1 -0.3 2.9
talk b=102| w = |02 w = 10| g=]|1.0
gift 01| ** 0.1 #/gming 2.0 2.2
hat 1.2 0.6 -1.2 0.6

* Log-linear/feed-forward language models

* Stochastic gradient descent and mini-batching

* Features for language modeling

* Implement: Feed forward language model 19
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Language Models 3:

Recurrent LMs
<s> <s> this IS a nen </s>

00000 00000 00000 /00000 00000 00000

Q000 ¢
00000
0000 (
0000 (

* Recurrent neural networks

* Vanishing Gradient and LSTMs/GRUs

* Regularization and dropout

* Implement: Recurrent neural network LM =
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Neural MT 1:
Encoder-decoder Models

this is a pen </s> kore wa pen desu

CTTTTT

v v v
kore wa pen desu </s>

* Encoder-decoder Models

* Searching for hypotheses
* Mini-batched training

21

* Implement: Encoder-decoder model
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Neural MT 2: kouewS e
- asS
Attentional Models %%ﬁ
HWLAFIY 2L TOERET £ 5, d,:---,9,

cous  AHEEEEE ENEEEEEEE
o AHEEEEE ENEEEEEEE
recommend [ AN  HNEEEEEER
an e T 1T
nexpensive [ NN NN "1 pelFe
restaurant [ T T e
: R T T
S | N (T

e Attention In its various varieties

* Unknown word replacement
* Attention improvements, coverage models

22

* Implement: Attentional model
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Neural MT 3: Self-attention, CNNs

this is an example
this
IS . »

an
example

attention weight vectors

0@
@e®
0@
o0 « Il

» Self attention
* Convolutional neural networks

* A case study, the transformer

* Implement: Self-attentional models

23
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Data and Evaluation

24
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Data/Evaluation 1a: Creating Data

ﬁEI]p Foh | za-x | AE=dy | aE—y | Ivex M BEEE | ENG &ﬂ]e ﬂlﬂinitl’]i

FE-F>» HE £ BE 54

b FE=F ERE -1 [PR] 4 0@Ao@ILUAEE I A ARRaSHERCL i 7
[PR] (ki H G ICi DA0F 3 1 rin T it fiik | LUAEE A s 7L + 0| MWYI—kc0| EHETTSD Fxud = SEAER  XEYAI b %
<0 | WYI—hi<23) |[EFTF0|q15 Fxud ™ DEEHR XY

Editorial: Aging society does not necessarily spell doom

H‘_’tﬁﬂ . ﬁ Eﬂﬁﬁ rﬁﬁﬂ] @ :%' ﬁ %ﬁﬁ_ ‘ Longevity is something to be celebrated, but when it comes to the aging of Japanese society, it is
SR 20124055058 02/305 often discussed in a pessimistic tone.

SO TEVWIERDIL. B 745 E RS mohdIEN BV R - - .. . . .
‘ ERREDHTRVCLROIK, BRELLSLERRAELOTELNBILN S %E{Rﬂiﬁ ‘ One reason for this is the continuing decline in people of working age.|Learning that our society

FHTLBHLTEHS. REAAD BHE I AEREI [HERI 25, RN EHE]
B | IABEEDLNALHLETRICAREES I, LM AOLEETOLICALRS,

is shifting from one in which four working people financially support one senior citizen, to
another in which each working person must support one senior citizen -- a so-called "piggyback"

EOSIFREEREL~ILOEREIBE (RoEBOEA) 2L LE|ELIFA~ %, setup -—-would make anyone anxious. And indeed, that is exactly what is happening.
BER IHREFHELLRT Y. FHEEEELO VWAL ET VDS D it

[ g WO DURR -y O PR NP U =SNG JUUUVURY ORI N [y | NI S P[RRV S

* Preprocessing
* Document harvesting and crowdsourcing
* Other tasks: dialog, captioning

25

* Implement: Find/preprocess data
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Data/Evaluation 1b: Evaluation

taro ga hanako wo otozureta

W»

Taro visited Hanako the Taro visited the Hanako Hanako visited Taro

Adequate? o O X
Fluent? O X O
Better? B, C C

 Human evaluation
e Automatic evaluation

* Significance tests and meta-evaluation
* Implement: BLEU and measure correlation

26
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Data/Evaluation 2:
AnaIyS|s and Interpretatlon

* Analyzing results
* Visualization of neural MT models
* Implement: Visualization of results ¥
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Application Examples

28
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Applications 1: Summarization
and Data-to-text Generation

President Trump said Monday that the

United States and Mexico had reached

agreement to revise key portions of the

North American Free Trade Agreement and Trump Says Nafta Deal Reached Between
would finalize it within days, suggesting he " U.S. and Mexico

was ready to jettison Canada from the

trilateral trade pact if the country did not get

on board quickly.

* Generating shorter summaries of long texts
* Generating written summaries of data

* Necessary improvements to models

* Implement: Summarization model 2
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Applications 2: Dialog

he ate an apple - good, he needs to slim down

* Models for dialogs

* Ensuring diversity in outputs

* Coherence in generation

* Implement: Dialog generation 30
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Symbolic Translation
Models

31
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Symbolic Methods 1:
Word Alignment

KPR AT 2 Wi L 22 KPR A 40T % Wi L 2 |

taro visited hanako . taro visited hanako .

* The IBM/HMM models
* The EM algorithm
* Finding word alignments

32

* Implement: Word alignment
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Symbolic Methods 2:
Monotonic Transduction and FSTs

he ate an apple

l
PRN VBD DET PP

* Models for sequence transduction
* The Viterbi algorithm
* Weighted finite-state transducers

33

* Implement: A part-of-speech tagger
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Symbolic Methods 3:
Phrase-based MT

F = watashi wa CMU de kouen wo okonaimasu .

watashi wa CMU de kouen wo okonaimasu

| at CMU a talk will give L
watashi wa Wo okonaimasu kouen CMU de

I will give a talk at CMU

E =1 will give a talk at CMU .
* Phrase extraction and scoring

* Reordering models
* Phrase-based decoding

34

* Implement: Phrase extraction or
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Advanced Topics

35
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Tree-based MT

X2 at x1 )

—» X2 X1

give a talk
at CMU

* Graphs and hyper-graphs
* Synchronous grammars

* Tree structure in neural models
* Implement: Tree-structured encoder

36
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Parameter Optimization

Highest o
LM ™ RM S
o Taro visited Hanako 0.2*-4 0.3=3 0.5*1 -2.2
X the Taro visited the Hanako g 2%5 (0 3%x4 05*1 -2.7
X Hanako visited Taro 0.2%~2 0.3*3 0.5%2 213

* Loss functions

* Deciding the hypothesis space

* Optimization criteria

 Implement: Optimization of NMT or PBMT"
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Incorporating External
Knowledge into NMT

eshbes sedeo

=

watashi wa CMU de
I at CMU

* Symbolic models with neural components
* Neural models with symbolic components

* Implement: Implement lexicons in NMT or
neural feature functions 3
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Subword Models

reconstructed

v

re+ construct+ ed

 Character models
e Subword models
* Morphology models

39

* Implement: Implement subword splitting
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Multi-lingual and Multi-task
Learning

hell
eo:hm%@

hola

* Learning for multiple tasks
* Learning for multiple languages

* Implement: Implement a multi-lingual neural
system 0
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Adaptation/Transfer Learning

General

Domain
Model

Model

 Domain adaptation
* Cross-task adaptation
* Implement: Adaptation methods

41
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Ensembling/System
Combination

Model 1 + Model 2

* Ensembles and distillation

* Post-hoc hypothesis combination

* Reranking

* Implement: Ensembled decoding “
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For Next Class

43
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Homework

* Read n-gram language modeling materials

* Get software working on your machine to follow along
the code walks

By Thursday 1/19: Python

By Tuesday 1/24: DyNet neural net library (use of
DyNet is not mandatory for assignments, but examples
will be in DyNet)

44
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