
11 Practicalities 2: Evaluating MT Systems

Now that we’ve talked about how to create machine translation systems and generate output,
we’d like to know how well they are doing at generating good translations. This chapter is
concerned with how to evaluate machine translation systems.

11.1 Manual Evaluation

�⇥⇤⌅⇧⌃⌥� 

Taro visited Hanako the Taro visited the Hanako Hanako visited Taro

Adequate?   Yes⌦⌦⌦⌦⌦⌦↵↵Yes  No
Fluent?⌦ ↵Yes     No Yes
Better?    1 2   3

Figure 30: Examples of di↵erent types of human evaluation.

The ultimate test of translation results is whether they are suitable for human consumption
by an actual user of the system. Thus, it is common to perform manual evaluation, where
human raters look at the translation results and manually decide whether a translation is good
or not. When doing so, there are a number of criteria that can be used to rate translation
results, as shown in Figure 30:

Adequacy: Adequacy is a measure of the correctness of the translated content. Annotators
evaluate the output and note whether the entirety of the meaning of the input has been
reflected in the output and give a high score (e.g. 5) for perfect reflection of content, a
medium score (e.g. 3) when the content is partially reflected or hard to understand, and
a low score (e.g. 1) when the content is di�cult to understand.

Fluency: Fluency measures the naturalness of the output in the target language. An anno-
tator marks whether the sentence is perfect to the point where a native speaker could
have written it (e.g. 5), slightly stilted (e.g. 3) or entirely ungrammatical (e.g. 1). One
thing to note is that fluency can (and probably should) be measured by only observing
the target-language text, while adequacy requires reading the source sentence.

Rank-based Evaluation: Finally, it is also possible to measure the goodness of sentences
by comparing multiple system outputs and ranking them. This variety of evaluation
is often easier, as it’s often clear to even inexperienced annotators which sentence is a
better translation. On the other hand, it is di�cult to deduce the overall quality using
a purely ranked evaluation.

One other point to note is how to present examples to evaluators. It is ideal to use a
bilingual speaker who can speak both the source and target languages, as this will allow them
to read the source and fully understand it before evaluating the target. However, it is also
possible to use monolingual speakers by showing them a reference translation in the target
language and asking them to compare closeness to the reference. This provides a cheaper
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alternative but also su↵ers problems of accuracy in the evaluation because annotators can be
inappropriately influenced by surface-level overlaps with the reference.

11.2 Automatic Evaluation and BLEU

While manual evaluation is generally preferable in situations where we can a↵ord to do so, it is
also time consuming and costly to check translations one-by-one by hand. Because of this, it
is common to use automatic evaluation as a proxy instead. The core idea behind automatic
evaluation is that it is possible to automatically calculate evaluation scores by comparing the
system output to one or more human-created reference translations. The closer the system
output is to the reference translation, the higher the evaluation score becomes.

11.2.1 BLEU Score

The most widely used automatic evaluation score is BLEU [11] score. BLEU is based on two
elements:

n-gram Precision: Of the n-grams output by the machine translation system, what per-
centage appear in a reference sentence?

Brevity Penalty: Because the n-gram precision focuses on accuracy of the output words,
one way to game the system would be to output very short sentences that only consist
of n-grams that the model is very sure about. The brevity penalty puts a penalty on
sentences that are shorter than the reference, preventing these short sentences from
receiving an unnecessarily high score.

To write this precisely, we first define ē = ē1, . . . , ēn as an arbitrary n-gram of length n.
We then define a function

occur(E, ē) (94)

that returns the number of times that ē occurs in sentence E. Finally, we define two functions,
an n-gram count function that counts the number of n-grams of length n in the system output
Ê:

count(Ê, n) =
X

ē2{ē;|ē|=n}

occur(Ê, ē) (95)

= |E|+ 1� n (96)

as well as an n-gram match function

match-n(E, Ê, n) (97)

that counts the number of times that a particular n-gram occurs in both the system output
and reference E:31

match(E, Ê, n) =
X

ē2{ē;|ē|=n}

min(occur(E, ē), occur(Ê, ē)). (98)

31Because there are multiple correct ways to translate a particular sentence, it is also common to perform
evaluation using multiple correct human references. In this case, the count function for the references can
be modified to return the maximum number of times a particular n-gram occurs in any of the references.
In general, increasing the number of references makes evaluation more robust to superficial variations in the
output and increases evaluation accuracy.
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Figure 31: The brevity penalty in BLEU.

Then, given a full corpus of system outputs Ê and references E , we accumulate the counts
and matches over each sentence in the corpus.

count(Ê , n) =
X

Ê2E

count(Ê, n) (99)

match(E , Ê , n) =
X

hE,Êi2hE,Êi

match(E, Ê, n) (100)

(101)

We then can calculate the n-gram precision for the corpus as the number of matches divided
by the number of n-grams output:

prec(E , Ê , n) =
match(E , Ê , n)

count(Ê , n)
. (102)

The brevity penalty is designed to penalize system outputs that are shorter than the
reference, and is multiplied with the n-gram precision terms of the BLEU score, so a lower
value for the brevity penalty indicates that the score will be penalized more. Specifically, it
is calculated according to the following equations, which are also shown in Figure 31

brev(E , Ê) =

8
<

:
1 if count(Ê , 1) > count(E , 1)

e
1� count(E,1)

count(Ê,1) otherwise.
(103)

As can be seen in the figure, no penalty will be imposed when the output is longer than the
reference, and the penalty reduces the score to zero as the length ratio reduces to zero.

Finally, combining all of these together, we take the geometric mean of the n-gram preci-
sions up to a certain length of n (almost always 4, following the original paper) and multiply
it with the brevity penalty:

BLEU(E , Ê) = brev(E , Ê) ⇤ exp(
4X

n=1

log prec(E , Ê , n)). (104)
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11.2.2 Notes on BLEU and Automatic Evaluation

BLEU score is a very convenient tool in that it makes it possible to automatically evaluate
systems without spending additional human e↵ort. However, it is important to keep a few
things in mind when using it for evaluation.

Comparability: First, it is important to note that while BLEU score is useful to compare
the output of multiple systems on the same data set and translation task, there is little
meaning in the actual value of the BLEU score itself. For example, even if we have a BLEU
score of 30 for English-German translation, and a BLEU score of 32 for German-English
translation, this does not mean that our German-English results are better, because the
target languages are di↵erent. The same is true for results on di↵erent data-sets. This is
because BLEU is a↵ected by a number of factors, particularly the length of the sentences in
the test corpus (corpora with shorter sentences will generally receive higher BLEU scores),
and the length of the words in the language (languages like German that have longer words
will generally get a lower BLEU score than languages like English, which has comparatively
shorter words). In addition, even with the same data set, the BLEU score can be influenced
by the tokenizer used to split the test data into tokens (which a↵ects the n-gram counts), or
whether the tokens are lowercased before performing evaluation (where lowercasing will result
in a higher score). Because of this, when comparing systems it is essential to ensure that the
evaluation settings are identical to be able to fairly compare results. This is explained in detail
in [13], and many of these recommendations are implemented in the sacreBLEU toolkit.32

Corpus Level vs. Sentence Level: In the description above, BLEU was described
on the corpus level; all statistics are aggregated over the entire corpus before calculating
precisions, brevity penalties, etc. However, in some cases (for example, for optimization as
described in Section 18), it is convenient to calculate BLEU score over sentences. Of course,
it is trivial to calculate BLEU over a single sentence by treating E and Ê as a corpus with
a single sentence. However, for many sentences, it’s often the case that not a single 4-gram
will match with the reference, and thus the sentence will be given a BLEU score of 0, even if
some portion of the words have matched. To improve the robustness of BLEU to these short
inputs, it’s common to use smoothed BLEU or BLEU+1 [7], which re-defines the n-gram
precision to smooth n-grams with n > 1 by adding one to their numerator and denominator:

prec+1(E , Ê , n) =

8
<

:

match(E,Ê,1)
count(Ê,1) if n = 1

match(E,Ê,n)+1

count(Ê,n)+1
otherwise.

(105)

By smoothing all n-grams where n > 1, we can ensure that unless there is not a single unigram
match, the score will be greater than zero. This improves robustness to sentence-level inputs,
but also has some problems of its own, such as favoring inputs that are shorter than the
reference [10].

11.3 Significance and Stability Concerns

One more important thing to consider when evaluating systems is how trustworthy the results
are and whether a di↵erence in score between two systems actually represents a di↵erence in
accuracy between two systems. For example, if one model gets a score of 30.1, and another gets

32https://github.com/mjpost/sacreBLEU
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a score of 30.2, there’s a good chance that there is no real di↵erence between the systems, and
this is just a coincidence of some sort of randomness in our particular experimental setting.33

Randomness in Data Selection: The first concern that we may have is that the
di↵erence in scores is an artifact of the particular data that we used; if we chose another
test set, even one with very similar characteristics to our current test set, it might a↵ect the
results enough that the relative accuracy of the systems may change. The go-to method to
measure the e↵ect of this data selection on translation results is bootstrap resampling [6].
The basic idea behind bootstrap resampling is that we measure our translation accuracy on
random subsets of the actual test set. If one system is consistently better on all subsets, then
we can assume that the changes are stable, but if the winner changes depending on the subset
of data selected, then the results are likely due to random noise in the data.

This algorithm can be used to measure two things: how much variance there is in the
evaluation scores for a single system (which is the standard bootstrap method) and how
certain it is that a particular system is better than another (which is called the paired
bootstrap method). The standard bootstrap, run over M subsets of the data, is shown in
Algorithm 4. In Line 2, we first initialize an empty set of scores b. In the loop from Lines 3-7,
we perform M steps of bootstrapping, where in practice it is often preferable to set M = 1000
to M = 10000. In Line 4, we sample a subset of the test data, where in practice we usually
use exactly half of the sentences in the test data. In Line 5, we calculate the evaluation score,
such as BLEU score or any of the human evaluation scores above, and in Line 6, we add it
to the set of evaluation scores. In Line 8, we sort the scores, and in line 9, we take the score
that is 2.5% from the bottom, and the score that is 2.5% from the top. We can then treat
everything that is within these bounds as our 95% confidence interval, and everything that
falls outside of these bounds as outliers that we only expect to see 5% of the time. This will
give us a good idea of the general range of evaluation scores that we may expect to see if we
performed translation of other similar data.

Algorithm 4 Standard bootstrap resampling over M random subsets of the reference corpus
E and system output Ê . Finds 95% confidence intervals.
1: procedure Bootstrap
2: b {}

3: for t from 1 to M do
4: Subsample hE 0, Ê 0

i 2 hE , Êi
5: Calculate evaluation function for subset b0 = eval(E 0, Ê 0)
6: Add b0 to set b
7: end for
8: Sort b in ascending order of score
9: b’s (M ⇤ 0.025)th and (M ⇤ 0.975)th elements are lower and upper confidence bounds

10: end procedure

Now, let’s think about comparing two systems and trying to decide the confidence with
which we can say one of the two systems is better than the other. One way we could do
so is run the standard bootstrapping algorithm above, calculate the confidence intervals for
each system, and if the confidence intervals overlap, say there is no significance di↵erence,

33These concerns hold equally for both manual and automatic evaluation.
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if the confidence intrervals do not overlap then report a significant di↵erence. However,
this is making our job unnecessarily hard because it ignores the fact that the results of two
systems tend to co-vary; if System 1 performs poorly on a particular subset of the test data,
it might simply be because the dataset happens to be a di�cult one, and System 2 will also
perform poorly there. Thus, a method that considers this co-variance will be significantly
more accurate and sensitive to di↵erences between systems, and pick up on di↵erences more
easily.

A method that takes this intuition into account is paired bootstrapping. The details
are shown in Algorithm 5, which takes translation results from System 1 Ê

(1) and System 2
Ê
(2) and measures the probability that each is better than the other. Here the major loop

between Lines 2-14 is very similar to the previous standard bootstrapping algorithm, but
instead of measuring the score for a single system, we measure whether each system won or
lost on each subset of the data. The percentage of time that a particular system won can be
interpreted as the likelihood that that particular system is in fact the better system overall.

Algorithm 5 Paired bootstrap resampling over M random subsets of the reference corpus E
and two system outputs Ê(1) and Ê

(2).
1: procedure PairedBootstrap
2: cwin1  0, cwin2  0, ctie  0
3: for t from 1 to M do
4: Subsample hE 0, Ê(1)0, Ê(2)0

i 2 hE , Ê(1), Ê(2)
i

5: Calculate b(1)0 = eval(E 0, Ê(1)0)
6: Calculate b(2)0 = eval(E 0, Ê(2)0)
7: if b(1)0 > b(2)0 then
8: cwin1  cwin1 + 1
9: else if b(1)0 < b(2)0 then

10: cwin2  cwin2 + 1
11: else
12: ctie  ctie + 1
13: end if
14: end for
15: cwin1/M , cwin2/M , and ctie/M are the win and tie probabilities
16: end procedure

Randomness in Training: The above bootstrapping approaches are e↵ective in helping
to account for randomness in our selection of test data. One other factor that can result
in randomness and instability of results is the fact that each run of training an MT model
may result in di↵erent results, even on exactly the same data. For example, in the neural
MT models that we’ve covered so far, there is random initialization of parameters, random
shu✏ing of the training data, etc.

Similarly to the bootstrapping method above, this problem can be solved by performing
multiple training runs and averaging the results among these training runs. Unfortunately
however, because training is time consuming, it is usually not possible to run M = 1000 or
M = 10000 random restarts, like we did in the bootstrapping procedure. Based on empirical
experiments, [3] note that while more runs are better, running training at least M = 3 times
is enough to guarantee some amount of stability.
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11.4 Other Automatic Evaluation Metrics

Next, we will turn to evaluation metrics other than BLEU. BLEU was one of the first au-
tomatic metrics used in measuring translation accuracy and has actually stood the test of
time relatively well; as a general-purpose metric of translation quality it is easy to compute
and relatively well correlated with human evaluation (more in Section 11.5), even compared
to some more recent methods. However, evaluating MT accuracy automatically is far from
a solved problem, and there are a number of metrics, some general purpose and some more
focused on a particular part of evaluation. Some major ones are outlined below:

METEOR [4] is a highly engineered evaluation metric that is perhaps second to BLEU
in popularity, and consistently scores well in evaluations of evaluation metric quality.
METEOR is a combination of several ideas, including using paraphrases to give partial
credit when a translation uses words that are semantically similar to the reference and
weighting content words more than function words. METEOR also allows the tuning
of several weights to optimize correlation with human evaluation metrics, and these
weights can be tuned on a language-by-language or task-by-task basis.

Translation Edit Rate (TER) [14] is another widely used metric. The idea behind TER
is that it correlates with the number of edits that would be needed to transform an
automatically generated translation into the reference translation. In commercial use of
machine translation, it is common to use MT as a first pass before a translator goes in
and fixes the translation, post-editing, and TER could be expected to be correlated
with the e↵ort required therefor. Human TER (HTER) measures this number of edits
directly, by asking a human to modify the output to create a reference before measuring
TER.

Focused measures focus on a particular insight of what should be important in the transla-
tion task. For example, MEANT [8] focuses on attempting to automatically determine
which semantic roles (who did what to whom). RIBES [5] focuses on whether the trans-
lation gets the reordering correct and is useful for languages that have highly disparate
word order.

11.5 Meta-evaluation

Given that there are a large number of solutions for automatic evaluation, we would like to
know which one we should be using. The most common way of doing so is by creating human
evaluations for a small set of data using methods described in Section 11.1, then measuring
the correlation between the human and automatic evaluation measures.

Two common ways to measure correlation in this setting are:

Pearson’s correlation: This coe�cient measures how much of a linear correlation exists
between the automatic and manual evaluation measures. If the relationship between
the two evaluation measures is entirely linear, the value will be one, and if there is no
relationship it will be zero.

Spearman’s rank correlation: This coe�cient whether the ranking between the human
evaluation is similar to that of automatic evaluation. If the ranking between human and
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manual evaluation is identical, then the score will be one, if there is no correlation, the
score will be zero, and if the ranking is inverse, the score will be negative one.

In general, we tend to care more about the rankings of systems than the absolute values of
scores, so Spearman’s rank correlation tends to be favored in meta-evaluation of evaluation
measures.

11.6 Further Reading

There are also a number of other topics in evaluation:

Extrinsic Evaluation: One thing to note is that all of the evaluation metrics introduced here
may tell us whether a translation is accurate or not, but they may not tell us whether
it is useful or not.34 Extrinsic evaluation instead measures whether translation results
can be used in a particular task. For example, [9] measure whether speech translation
results can be used to aid understanding of content, and [15] examine whether machine
translation results can be used by a down-stream automatic question answering system.

Crowdsourcing: One way to get human evaluation of machine translation results in a more
cost-e↵ective way is by utilizing crowdsourcing services [2]. These services are cheap
but also raise a number of issues, such as how to ensure that the raters are actually
providing quality evaluations.

More Sophisticated Error Analysis: Even after getting a single score, it becomes very
important to know exactly what is going wrong or right with a particular system. When
developing new systems, a good, but time-consuming way to do so, is to look at trans-
lations from a baseline system and your proposed system, and classify the errors that
each system makes into a typology of di↵erent mistakes (e.g. dropping words, substi-
tuting words, etc.), such as the one proposed by [16]. In order to make this analysis
more e�cient, it is also possible to attempt to automatically identify certain types of
errors into particular classes [12], or calculate statistics about particular word strings
that one system tends to be better at producing than the other [1]. Some of these
methods are implemented in open source tools that can be used for error analysis, such
as compare-mt.py.35

11.7 Exercise

Implement BLEU score with paired bootstrap resampling to measure the statistical signifi-
cance of di↵erences between translation results of two systems. Use this to measure whether
the di↵erence between your encoder-decoder and attentional translation models is statistically
significant. With regards to BLEU, I recommend that you try implementing it yourself for
learning purposes, then compare your scores against an existing canonical implementation
such as https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/

34With the potential exception of TER, which may be correlated with usefulness in post-editing.
35https://github.com/neulab/compare-mt
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multi-bleu.perl.36 It is also OK to just call this canonical implementation as an external
function, and implement just the paired bootstrap resampling.

Potential improvements to the evaluation include:

• Implementing another evaluation metric.

• Taking a look at the Conference on Machine Translation’s evaluation track data (http:
//statmt.org/wmt16/metrics-task/) and measuring the correlation between human
evaluation and BLEU or another metric.
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