
20 Advanced Topics 2: Hybrid Neural-symbolic Models

In the previous chapters, we learned about symbolic and neural models as two disparate
approaches. However, each of these approaches have their advantages.

20.1 Advantages of Neural vs. Symbolic Models

Before going into hybrid methods, it is worth talking about the relative advantages of neural
vs. symbolic methods. While there are many exceptions to the items listed below depending
on the particular model structure, they may be useful as rules-of-thumb when designing
models.

First, the advantages of neural methods:

Better generalization Perhaps the largest advantage of neural methods is their ability to
generalize by embedding various discrete phenomena in a low-dimensional space. By
doing so they make it possible to generalize across similar examples. For example,
if a word embedding is similar between two words, these words will be able to share
information across training examples, but if we are representing them as discrete symbols
this will not be the case.

Parameter e�ciency Another advantage of neural models stemming from their dimension
reduction and good generalization capacity is that they often can use many fewer param-
eters than the corresponding symbolic models. For example, a neural translation model
may have an order of magnitude fewer parameters than the corresponding phrase-based
model.

End-to-end training Finally, neural models can be trained in an end-to-end fashion. The
symbolic models for sequence transduction are generally trained by first performing
alignment, then rule extraction, then optimization of parameters, etc. As a result,
errors may cascade along the pipeline, with, for example, an alignment error having an
e↵ect on all downstream processes.

In contrast, there are some advantages of symbolic methods:

Robust learning of low-frequency events One of the major problems of neural models
is that while they tend to perform well on average, they often have trouble handling low-
frequency events such as low-frequency words or phrases that occur only once or a few
times in the training corpus, as the relevant parameters are only updated rarely during
the SGD training process. In contrast, symbolic methods often are able to remember
events from a single training example, as these events show up as a non-zero count in
n-gram models or phrase tables. This is particularly important for the case when there
is not much training data, and as a result, symbolic models often outperform neural
models in situations where we do not have very much data.

Learning of multi-word chunks A corollary of the previous problem item is that symbolic
models are often good at memorizing multi-word units, which are even rarer than words
themselves. These show up as n-gram counts or phrase tables, and can be memorized
from even a single training example with relatively high accuracy.

159

Input

Output 1

Output 2

Output 3

Output 4

PBMT
+NMT

Features,
Rerank

Output

Figure 60: An example of reranking a symbolic PBMT system with neural features.

20.2 Neural Features for Symbolic Models

The first way of combining multiple methods together is to try to incorporate neural features
into symbolic models to disambiguate hypotheses.

20.2.1 Neural Reranking of Symbolic Systems

The first method for doing so, reranking, is simple: we generate a large number of hypotheses
with a symbolic system, use a neural system to assign a score to each of these hypotheses,
and select the final hypothesis to output considering the scores of the neural system [14, 11].
An example of this is shown in Figure Figure 60.

Formally, this means that given an input F , we generate an n-best list Ê from our symbolic
system, and for each of the candidates, we calculate a new feature function:

�NMT(F, Ê) := logPNMT(Ê | F), (204)

where PNMT(Ê | F) is the probability assigned to the output by the NMT system. This feature
function can then be incorporated into the log-linear model described in Equation 150 as an
additional feature function. In order to choose the weight �NMT that will tell us the relative
importance of the feature function compared to the other features used in the symbolic system,
we can perform parameter optimization using any of the algorithms detailed in Section 18.

One important distinction to make is the di↵erence between post-hoc reranking as de-
scribed above, and incorporation of features into the MT system itself. In post-hoc reranking,
we first generate n-best candidates using some base model, calculate extra features, then
re-rank the hypotheses in the n-best list using these features. This has the advantage that
it is easy to test new feature functions without messing with the decoder, and has proven
useful as a light-weight way to judge the improvements a↵orded by new methods [12]. On
the other hand, the accuracy of the re-ranked results will be necessarily limited by the best
result existing in the n-best list, and if the new features are very important for getting good
results, reranking has its limits.58

20.2.2 Incorporating Neural Features in Symbolic Systems

In order to overcome the limits of n-best reranking, it is also possible to incorporate features
directly into the search process for symbolic translation models. The important thing here is

58One way to explicitly measure the limits of reranking is by explicitly selecting the hypothesis in an n-best
list that has the highest BLEU score. This best achievable hypothesis is often called an oracle, and gives
an upper bound on the accuracy achievable by reranking. However, because measures like BLEU are overly
sensitive to superficial di↵erences in the surface form of the hypothesis (as noted in Section 11), for translation
even the n-best oracle can be too optimistic, and not of much use as an upper bound.

160

that the features be in a form that makes it possible to perform search for symbolic translation
models.

Fortunately, for phrase-based models and neural models, search proceeds in the same
order; both models generate hypotheses from left to right. As a result, conceptually, it is
relatively easy to incorporate neural models into phrase-based translation systems. Let’s say
a phrase-based system adds a new phrase to a hypothesis, extending the partial translation
from êt11 to êt21 , resulting in an additional t2 � t1 words in the target hypothesis. If this is
the case, the neural machine translation system can calculate the probability of adding these
additional words:

P (et2
t1+1 | F, ê

t1
1) =

t2Y

t=t1+1

P (êt | F, ê
t�1
1). (205)

The log of this value would then be added to the NMT feature function:

�NMT(F, e
t2
1) := �NMT(F, e

t1
1) + logP (et2

t1+1 | F, ê
t1
1). (206)

This allows for search using these feature functions in WFST-based or phrase-based symbolic
sequence-to-sequence models.59

20.3 Symbolic Features for Neural Models

It is also possible to create hybrid models in the opposite direction: incorporating symbolic
information within neural sequence-to-sequence models. The general method for doing so is
by using probabilities calculated according to a symbolic model as a seed in calculating the
probabilities of a neural model.

Symbolic Biases: One example of this is incorporating discrete translation lexicons as
a bias into neural translation systems [1]. One of the problems with neural MT systems is
that they tend to translate rare words into other similar rare words (e.g. “Tunisia” may be
translated into “Norway”), or drop rare words from their translations altogether (e.g. “I went
to Tunisia” will be translated into “I went”). In contrast, discrete translation lexicons such as
those induced by the IBM models tend to be relatively robust in their estimation of translation
probabilities based on co-occurrence statistics, and will certainly never translate between
words that never co-occur in the training corpus. If we have a lexicon-based translation
probability

plex = Plex(et | F, e
t�1
1), (207)

this can be used as a bias to a neural model Pnn as follows:

Pnn(et | F, e
t�1
1) = softmax(Wh+ b+ log(plex,t + ✏)). (208)

This will seed the translation probabilities with the probabilities calculated using a lexicon.
Here, ✏ is a smoothing parameter (like the ones that we used with neural language models),
which prevents the model from assigning zero probability to any of the words in the output.

59 Unfortunately, this method is not applicable to tree-based models using the CKY-like search algorithms
described in Section 15. However, there are also methods for left-to-right generation in tree-based models,
which impose some restrictions on the shape of the model but would make decoding with these feature functions
tractable [18].

161

So how do we get this lexicon probability? Assume we have a translation probabilities
Plex(e|f) for each word in the vocabulary, calculated by the IBM models or any other method.
Given these probabilities, and a source sentence F , we can create a matrix where each column
is a vector of lexicon probabilities for each word in the source sentence, and each row represents
a word in the target vocabulary:

Plex =

2

6664

P (e = 1 | f1) P (e = 1 | f2) · · · P (e = 1 | f|F |)
P (e = 2 | f1) P (e = 2 | f2) · · · P (e = 2 | f|F |)

...
...

. . .
...

P (e = V | f1) P (e = V | f2) · · · P (e = V | f|F |)

3

7775
. (209)

Next, we can multiply this matrix by the attention vector at time step t, which allows us to
consider the current attention values when choosing which of these lexicon probabilities to
consider at the next time step:

plex,t = Plex↵t. (210)

This vector can then be incorporated into the full translation probability as shown in Equa-
tion 208, allowing the translation lexicon to bias the neural network’s probabilities, which
proves e↵ective for preventing unreasonable translation mistakes.

Symbolic Alternatives: Another example of a way to incorporate symbolic probabilities
into neural networks is as alternatives to using the standard neural probabilities. To give an
example here, we could assume that the probability of the next word is calculated as an
interpolation between the neural probabilities and the lexicon probabilities:

Pnn(et | F, e
t�1
1) = (1� �t)softmax(Wh+ b) + �tplex,t, (211)

where �t is an interpolation coe�cient similar to that used in n-gram language models. �t can
be calculated based on the context, so if we are in a context where the model feels confident
that its lexicon probability is correct it can set �t very high to rely on the lexicon probability,
and if we are in a context where the model feels confident that the neural model is more
correct, it can set �t to a low value close to zero.

This method of giving the model other alternatives to generate translations is flexible, and
has been used in a number of contexts such as:

• Incorporation of translation lexicons [1] or phrase tables [16] into neural sequence-to-
sequence models.

• Incorporation of “copying” mechanisms into neural models [5]. This makes it possible
for the model to choose whether to output a word from the standard output vocabulary,
or copy a word from the input sentence.

• Combination of neural and n-gram and neural language models [10]. This makes it
possible to take advantage of the fact that neural language models have some advantages
(e.g. better handling of long-distance dependencies and common phenomena), while n-
gram language models have others (e.g. better memorization of low-frequency local
word sequences).

162

0.0
0.0
0.0

0.2
-0.9
0.5

-0.2
0.1
0.8

-0.4
0.5
0.1

0.5
0.9
-0.8

-0.5
0.5
0.1

-0.2
0.2
0.7

0.0
0.0
0.0

0.2
-0.9
0.5

-0.4
0.5
0.1

0.0
0.0
0.0

0.2
-0.9
0.5

0.5
0.9
-0.8

0.0
0.0
0.0

-0.2
0.1
0.8

-0.5
0.5
0.1

0.0
0.0
0.0

-0.2
0.1
0.8

-0.2
0.2
0.7

a c

a d

b e

b f

a

b

c

d

e

f

0.0
0.0
0.0

0.2
-0.9
0.5

-0.2
0.15
0.75

0.5
0.9
-0.8

-0.45
0.5
0.1

a

b

c

d

e

f

(a) Hidden trajectories (b) Hidden states (c) Clustered states

Figure 61: An example of extracing a finite state automaton from a recurrent neural net-
work by (a) calculating RNN trajectories, (b) turning these trajectories into states, and (c)
clustering similar states.

20.4 Extracting Symbolic Knowledge from Neural Networks

It is also possible to use neural networks to extract discrete, symbolic structure from text. This
makes it possible to use the modeling power of neural networks, but also allow for modeling of
discrete structures that tend to be more interpretable or conducive for use for other purposes.

One example of extracting knowledge from neural networks is the extraction of finite state
automata from recurrent neural networks [4]. The basic idea behind these methods is that
the hidden vector ht of a neural network can be equated to a representation of its state in a
finite state automaton. Let’s assume that our RNN is a language model that calculates the
probability of E given a state transition function

ht = RNN(ht�1, et), (212)

and we would like to create an automaton approximating its state dynamics. This can be
done in three steps:

Collecting evidence First, given a large corpus E = E1, E2, . . . , E|E|, we calculate the hid-
den state trajectories H = H1, H2, . . . , H|E| for each sentence. For the ith sentence,
hidden state trajectory Hi = hi,1,hi,2, . . . ,hi,|Hi| is the sequence of hidden states that
results from inputting Ei to the recurrent neural network.

Creating an expanded FSA Next, we can create an FSA where each unique vector h is
assigned to its own state, and there is an edge labeled with word et traveling between
every state ht�1 to ht.

Clustering states In actuality, because each hidden vector will be di↵erent depending on
the prefix et1, this will simply result in a tree that branches out until we have one path
for each unique sentence in the corpus. This is not very interesting, of course, so to

163

create a more compact and interpretable FSA, we can cluster together similar hidden
vectors into the same discrete state within the FSA. For example, [4] note that the
hidden state in a standard RNN is between zero and one, quantize the state to a binary
vector, and group states with the same binary vector together. There are also more
sophisticated models, such as ones that train a hidden Markov model on top of the
hidden state vectors [8, 17].

Another, indirect way in which neural models can contribute to symbolic systems is by
improving the learning of alignments. These alignments can be used to improve the extraction
of phrases or rules for symbolic sequence-to-sequence modeling methods. A variety of methods
for doing so have been proposed, for example by using recurrent neural networks to predict the
predictions of a standard symbolic unsupervised word alignment system [15], or by proposing
specific model structures that allow for unsupervised learning of alignments [6].

20.5 Further Reading

There are a number of more advanced topics that can be considered when combining together
neural and symbolic models.

Better search for symbolic models with neural features As noted in subsubsection 20.2.2,
it is possible to perform search with neural features in symbolic models. However, there
is still the problem that (unlike when using n-gram models), the context required to
calculate these features during search is infinite, which makes it di�cult to re-combine
hypotheses, and e�ciently search over a large number of hypotheses in non-exponential
time. There have been a number of solutions to this problem, including shaping neural
models so that the context they calculate does not significantly expand the hypothesis
space [9, 13], group together hypotheses based on their n-gram context and keep only
the best-scoring RNN states [2], or consider only limited contexts like those of n-gram
models [3].

Models incorporating discrete variables in neural networks It is also possible to in-
corporate discrete variables in neural models. Some examples of this include the incor-
poration of hard attention, which uses a 0-1 discrete binary variable to indicate whether
the model is attending to a word or not [7], or the use of discrete structures to model
language [19]. Because it is not possible to perform back-propagation through discrete
variables, it is often necessary to use more advanced optimization techniques, such as
the reinforcement learning methods described in Section 18.

20.6 Exercise

As an exercise here, you could try to incorporate Model 1 translation probabilities that you
calculated in the exercise of Section 12 into the attentional model that you implemented in
the exercise for Section 8. This would involve calculating the matrix of Equation 209, and
incorporating this into your attentional model, either as a bias (Equation 208), or through
linear interpolation (Equation 211).

164

References

[1] Philip Arthur, Graham Neubig, and Satoshi Nakamura. Incorporating discrete translation lexicons
into neural machine translation. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2016.

[2] Michael Auli and Jianfeng Gao. Decoder integration and expected bleu training for recurrent
neural network language models. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL), pages 136–142, 2014.

[3] Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas Lamar, Richard Schwartz, and John
Makhoul. Fast and robust neural network joint models for statistical machine translation. In
Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL),
pages 1370–1380, 2014.

[4] C Lee Giles, Cli↵ord B Miller, Dong Chen, Hsing-Hen Chen, Guo-Zheng Sun, and Yee-Chun
Lee. Learning and extracting finite state automata with second-order recurrent neural networks.
Neural Computation, 4(3):393–405, 1992.

[5] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 1631–1640, 2016.

[6] Joël Legrand, Michael Auli, and Ronan Collobert. Neural network-based word alignment through
score aggregation. In Proceedings of the First Conference on Machine Translation, pages 66–73,
Berlin, Germany, August 2016. Association for Computational Linguistics.

[7] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Rationalizing neural predictions. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
107–117, 2016.

[8] Chu-Cheng Lin, Waleed Ammar, Chris Dyer, and Lori Levin. Unsupervised pos induction with
word embeddings. In Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pages
1311–1316, 2015.

[9] Xunying Liu, YongqiangWang, Xie Chen, Mark JF Gales, and Philip CWoodland. E�cient lattice
rescoring using recurrent neural network language models. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 4908–4912. IEEE, 2014.

[10] Graham Neubig and Chris Dyer. Generalizing and hybridizing count-based and neural language
models. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), 2016.

[11] Graham Neubig, Makoto Morishita, and Satoshi Nakamura. Neural reranking improves subjective
quality of machine translation: NAIST at WAT2015. 2016.

[12] Franz Josef Och, Daniel Gildea, Sanjeev Khudanpur, Anoop Sarkar, Kenji Yamada, Alex Fraser,
Shankar Kumar, Libin Shen, David Smith, Katherine Eng, Viren Jain, Zhen Jin, and Dragomir
Radev. A smorgasbord of features for statistical machine translation. In Proceedings of the 2004
Human Language Technology Conference of the North American Chapter of the Association for
Computational Linguistics (HLT-NAACL), pages 161–168, 2004.

[13] Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner. Weighting finite-state transductions with
neural context. In Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pages
623–633, 2016.

165

[14] Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to sequence learning with neural
networks. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems
(NIPS), pages 3104–3112, 2014.

[15] Akihiro Tamura, Taro Watanabe, and Eiichiro Sumita. Recurrent neural networks for word
alignment model. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (ACL), pages 1470–1480, 2014.

[16] Yaohua Tang, Fandong Meng, Zhengdong Lu, Hang Li, and Philip L. H. Yu. Neural machine
translation with external phrase memory. CoRR, abs/1606.01792, 2016.

[17] Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. Unsupervised
neural hidden markov models. In Proceedings of the Workshop on Structured Prediction for NLP,
pages 63–71, 2016.

[18] Taro Watanabe, Hajime Tsukada, and Hideki Isozaki. Left-to-right target generation for hierar-
chical phrase-based translation. In Proceedings of the 44th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 777–784, 2006.

[19] Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang Ling. Learning
to compose words into sentences with reinforcement learning. arXiv preprint arXiv:1611.09100,
2016.

166

