
4 Language Models 2: Log-linear Language Models

This chapter will discuss another set of language models: log-linear language models [9, 4],
which take a very di↵erent approach than the count-based n-grams described above.11

4.1 Model Formulation

Like n-gram language models, log-linear language models still calculate the probability of a
particular word et given a particular context et�1

t�n+1. However, their method for doing so is
quite di↵erent from count-based language models, based on the following procedure.

Calculating features: Log-linear language models revolve around the concept of fea-
tures. In short, features are basically, “something about the context that will be useful in
predicting the next word”. More formally, we define a feature function �(et�1

t�n+1) that takes a
context as input, and outputs a real-valued feature vector x 2 RN that describe the context
using N di↵erent features.12
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Figure 4: An example of feature values for a particular context.

For example, from our bi-gram models from the previous chapter, we know that “the
identity of the previous word” is something that is useful in predicting the next word. If we
want to express the identity of the previous word as a real-valued vector, we can assume that
each word in our vocabulary V is associated with a word ID j, where 1  j  |V |. Then, we
define our feature function �(et

t�n+1) to return a feature vector x = R|V |, where if et�1 = j,
then the jth element is equal to one and the remaining elements in the vector are equal to

11It should be noted that the cited papers call these maximum entropy language models. This is
because models in this chapter can be motivated in two ways: log-linear models that calculate un-normalized
log-probability scores for each function and normalize them to probabilities, and maximum-entropy models

that spread their probability mass as evenly as possible given the constraint that they must model the training
data. While the maximum-entropy interpretation is quite interesting theoretically and interested readers can
reference [1] to learn more, the explanation as log-linear models is simpler conceptually, and thus we will use
this description in this chapter.

12Alternative formulations that define feature functions that also take the current word as input �(ett�n+1)
are also possible, but in this book, to simplify the transition into neural language models described in Section 5,
we consider features over only the context.
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Figure 5: An example of the weights for a log linear model in a certain context.

zero. This type of vector is often called a one-hot vector, an example of which is shown
in Figure 4(a). For later use, we will also define a function onehot(i) which returns a vector
where only the ith element is one and the rest are zero (assume the length of the vector is
the appropriate length given the context).

Of course, we are not limited to only considering one previous word. We could also
calculate one-hot vectors for both et�1 and et�2, then concatenate them together, which
would allow us to create a model that considers the values of the two previous words. In fact,
there are many other types of feature functions that we can think of (more in Section 4.4),
and the ability to flexibly define these features is one of the advantages of log-linear language
models over standard n-gram models.

Calculating scores: Once we have our feature vector, we now want to use these features
to predict probabilities over our output vocabulary V . In order to do so, we calculate a score
vector s 2 R|V | that corresponds to the probability of each word: words with higher scores in
the vector will also have higher probabilities. We do so using the model parameters ✓, which
specifically come in two varieties: a bias vector b 2 R|V |, which tells us how likely each
word in the vocabulary is overall, and a weight matrix W = R|V |⇥N which describes the
relationship between feature values and scores. Thus, the final equation for calculating our
scores for a particular context is:

s = Wx+ b. (17)

One thing to note here is that in the special case of one-hot vectors or other sparse vectors
where most of the elements are zero. Because of this we can also think about Equation 17
in a di↵erent way that is numerically equivalent, but can make computation more e�cient.
Specifically, instead of multiplying the large feature vector by the large weight matrix, we can
add together the columns of the weight matrix for all active (non-zero) features as follows:

s =
X

{j:xj 6=0}

W·,jxj + b, (18)

where W·,j is the jth column of W . This allows us to think of calculating scores as “look up
the vector for the features active for this instance, and add them together”, instead of writing
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them as matrix math. An example calculation in this paradigm where we have two feature
functions (one for the directly preceding word, and one for the word before that) is shown in
Figure 5.

Calculating probabilities: It should be noted here that scores s are arbitrary real
numbers, not probabilities: they can be negative or greater than one, and there is no restriction
that they add to one. Because of this, we run these scores through a function that performs
the following transformation:

pj =
exp(sj)P
j̃
exp(s

j̃
)
. (19)

By taking the exponent and dividing by the sum of the values over the entire vocabulary,
these scores can be turned into probabilities that are between 0 and 1 and sum to 1.

This function is called the softmax function, and often expressed in vector form as follows:

p = softmax(s). (20)

Through applying this to the scores calculated in the previous section, we now have a way to
go from features to language model probabilities.

4.2 Learning Model Parameters

Now, the only remaining missing link is how to acquire the parameters ✓, consisting of the
weight matrix W and bias b. Basically, the way we do so is by attempting to find parameters
that fit the training corpus well.

To do so, we use standard machine learning methods for optimizing parameters. First, we
define a loss function `(·) – a function expressing how poorly we’re doing on the training
data. In most cases, we assume that this loss is equal to the negative log likelihood:

`(Etrain,✓) = � logP (Etrain;✓) = �
X

E2Etrain

logP (E;✓). (21)

We assume we can also define the loss on a per-word level:

`(ett�n+1,✓) = logP (et | e
t�1
t�n+1;✓). (22)

Next, we optimize the parameters to reduce this loss. While there are many methods for
doing so, in recent years one of the go-to methods is stochastic gradient descent (SGD).
SGD is an iterative process where we randomly pick a single word et (or mini-batch, discussed
in Section 5) and take a step to improve the likelihood with respect to et. In order to do
so, we first calculate the derivative of the loss with respect to each of the features in the full
feature set ✓:

d`(et
t�n+1,✓)

d✓
. (23)

We can then use this information to take a step in the direction that will reduce the loss
according to the objective function

✓  ✓ � ⌘
d`(et

t�n+1,✓)

d✓
, (24)

16



where ⌘ is our learning rate, specifying the amount with which we update the parameters
every time we perform an update. By doing so, we can find parameters for our model that
reduce the loss, or increase the likelihood, on the training data.

This vanilla variety of SGD is quite simple and still a very competitive method for opti-
mization in large-scale systems. However, there are also a few things to consider to ensure
that training remains stable:

Adjusting the learning rate: SGD requires also requires us to carefully choose ⌘: if ⌘ is
too big, training can become unstable and diverge, and if ⌘ is too small, training may
become incredibly slow or fall into bad local optima. One way to handle this problem
is learning rate decay: starting with a higher learning rate, then gradually reducing
the learning rate near the end of training. Other more sophisticated methods are listed
below.

Early stopping: It is common to use a held-out development set, measure our log-likelihood
on this set, and save the model that has achieved the best log-likelihood on this held-
out set. This is useful in case the model starts to over-fit to the training set, losing its
generalization capability, we can re-wind to this saved model. As another method to
prevent over-fitting and smooth convergence of training, it is common to measure log
likelihood on a held-out development set, and when the log likelihood stops improving
or starts getting worse, reduce the learning rate.

Shu✏ing training order: One of the features of SGD is that it processes training data
one at a time. This is nice because it is simple and can be e�cient, but it also causes
problems if there is some bias in the order in which we see the data. For example,
if our data is a corpus of news text where news articles come first, then sports, then
entertainment, there is a chance that near the end of training our model will see hundreds
or thousands of entertainment examples in a row, resulting in the parameters moving to
a space that favors these more recently seen training examples. To prevent this problem,
it is common (and highly recommended) to randomly shu✏e the order with which the
training data is presented to the learning algorithm on every pass through the data.

There are also a number of other update rules that have been proposed to improve gradient
descent and make it more stable or e�cient. Some representative methods are listed below:

SGD with momentum [12]: Instead of taking a single step in the direction of the current
gradient, SGD with momentum keeps an exponentially decaying average of past gradi-
ents. This reduces the propensity of simple SGD to “jitter” around, making optimization
move more smoothly across the parameter space.

AdaGrad [5]: AdaGrad focuses on the fact that some parameters are updated much more
frequently than others. For example, in the model above, columns of the weight matrix
W corresponding to infrequent context words will only be updated a few times for every
pass through the corpus, while the bias b will be updated on every training example.
Based on this, AdaGrad dynamically adjusts the training rate ⌘ for each parameter
individually, with frequently updated (and presumably more stable) parameters such
as b getting smaller updates, and infrequently updated parameters such as W getting
larger updates.
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Adam [6]: Adam is another method that computes learning rates for each parameter. It does
so by keeping track of exponentially decaying averages of the mean and variance of past
gradients, incorporating ideas similar to both momentum and AdaGrad. Adam is now
one of the more popular methods for optimization, as it greatly speeds up convergence
on a wide variety of datasets, facilitating fast experimental cycles. However, it is also
known to be prone to over-fitting, and thus, if high performance is paramount, it should
be used with some caution and compared to more standard SGD methods.

[11] provides a good overview of these various methods with equations and notes a few other
concerns when performing stochastic optimization.

4.3 Derivatives for Log-linear Models

Now, the final piece in the puzzle is the calculation of derivatives of the loss function with
respect to the parameters. To do so, first we step through the full loss function in one pass
as below:

x = �(et�1
t�m+1) (25)

s =
X

{j:xj 6=0}

W·,jxj + b (26)

p = softmax(s) (27)

` = � log pet . (28)

And thus, using the chain rule to calculate

d`(et
t�n+1,W, b)

db
=

d`

dp

dp

ds

ds

db
(29)

d`(et
t�n+1,W, b)

dW·,j
=

d`

dp

dp

ds

ds

dW·,j
(30)

we find that the derivative of the loss function for the bias and each column of the weight
matrix is:

d`(et
t�n+1,W, b)

db
= p� onehot(et) (31)

d`(et
t�n+1,W, b)

dW·,j
= xj(p� onehot(et)) (32)

Confirming these equations is left as a (highly recommended) exercise to the reader. Hint:
when performing this derivation, it is easier to work with the log probability log p than working
with p directly.

4.4 Other Features for Language Modeling

One reason why log-linear models are nice is because they allow us to flexibly design features
that we think might be useful for predicting the next word. For example, these could include:

Context word features: As shown in the example above, we can use the identity of et�1

or the identity of et�2.
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Context class: Context words can be grouped into classes of similar words (using a method
such as Brown clustering [2]), and instead of looking up a one-hot vector with a separate
entry for every word, we could look up a one-hot vector with an entry for each class
[3]. Thus, words from the same class could share statistical strength, allowing models
to generalize better.

Context su�x features: Maybe we want a feature that fires every time the previous word
ends with “...ing” or other common su�xes. This would allow us to learn more gener-
alized patterns about words that tend to follow progressive verbs, etc.

Bag-of-words features: Instead of just using the past n words, we could use all previous
words in the sentence. This would amount to calculating the one-hot vectors for every
word in the previous sentence, and then instead of concatenating them simply summing
them together. This would lose all information about what word is in what position,
but could capture information about what words tend to co-occur within a sentence or
document.

It is also possible to combine together multiple features (for example et�1 is a particular
word and et�2 is another particular word). This is one way to create a more expressive feature
set, but also has a downside of greatly increasing the size of the feature space. We discuss
these features in more detail in Section 5.1.

4.5 Further Reading

The language model in this section was basically a featurized version of an n-gram language
model. There are quite a few other varieties of linear featurized models including:

Whole-sentence language models: These models, instead of predicting words one-by-one,
predict the probability over the whole sentence then normalize [10]. This can be con-
ducive to introducing certain features, such as a probability distribution over lengths of
sentences, or features such as “whether this sentence contains a verb”.

Discriminative language models: In the case that we want to use a language model to
determine whether the output of a system is good or not, sometimes it is useful to train
directly on this system output, and try to re-rank the outputs to achieve higher accuracy
[8]. Even if we don’t have real negative examples, it can be possible to “hallucinate”
negative examples that are still useful for training [7].

4.6 Exercise

In the exercise for this chapter, we will construct a log-linear language model and evaluate
its performance. I highly suggest that you try to use the NumPy library to hold and perform
calculations over feature vectors, as this will make things much easier. If you have never used
NumPy before, you can take a look at this tutorial to get started: https://docs.scipy.org/
doc/numpy-dev/user/quickstart.html.

Writing the program will entail:

• Writing a function to read in the training and test corpora, and converting the words
into numerical IDs.
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• Writing the feature function �(et�1
t�n+1), which takes in a string and returns which fea-

tures are active (for example, as a baseline these can be features with the identity of
the previous two words).

• Writing code to calculate the loss function.

• Writing code to calculate gradients and perform stochastic gradient descent updates.

• Writing (or re-using from the previous exercise) code to evaluate the language models.

Similarly to the n-gram language models, we will measure the per-word log likelihood and
perplexity on our text corpus, and compare it to n-gram language models. Handling unknown
words will similarly require that you use the uniform distribution with 10,000,000 words in
the English vocabulary.

Potential improvements to the model include designing better feature functions, adjusting
the learning rate and measuring the results, and researching and implementing other types of
optimizers such as AdaGrad or Adam.
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