
5 Language Models 3: Neural Networks and Feed-forward
Language Models

In this chapter, we describe language models based on neural networks, a way to learn more
sophisticated functions to improve the accuracy of our probability estimates with less feature
engineering.

5.1 Potential and Problems with Combination Features

steak → high
farmers eat

hay → low
steak → low

cows eat
hay → high

steak → low
farmers grow

hay → high
steak → low

cows grow
hay → low

Figure 6: An example of the e↵ect that combining multiple words can have on the probability
of the next word.

Before moving into the technical detail of neural networks, first let’s take a look at a
motivating example in Figure 6. From the example, we can see et�2 = “farmers” is compatible
with et = “hay” (in the context “farmers grow hay”), and et�1 = “eat” is also compatible
(in the context “cows eat hay”). If we are using a log-linear model with one set of features
dependent on et�1, and another set of features dependent on et�2, neither set of features can
rule out the unnatural phrase “farmers eat hay.”

One way we can fix this problem is by creating another set of features where we learn
one vector for each pair of words et�2, et�1. If this is the case, our vector for the context
et�2 = “farmers”, et�1 = “eat” could assign a low score to “hay”, resolving this problem.
However, adding these combination features has one major disadvantage: it greatly expands
the parameters: instead of O(|V |

2) parameters for each pair ei�1, ei, we need O(|V |
3) param-

eters for each triplet ei�2, ei�1, ei. These numbers greatly increase the amount of memory
used by the model, and if there are not enough training examples, the parameters may not
be learned properly.

Because of both the importance of and di�culty in learning using these combination fea-
tures, a number of methods have been proposed to handle these features, such as kernelized
support vector machines [10] and neural networks [23, 11]. Specifically in this section,
we will cover neural networks, which are both flexible and relatively easy to train on large
data, desiderata for sequence-to-sequence models.

5.2 A Brief Overview of Neural Networks

To understand neural networks in more detail, let’s take a very simple example of a function
that we cannot learn with a simple linear classifier like the ones we used in the last chapter:
a function that takes an input x 2 {�1, 1}2 and outputs y = 1 if both x1 and x2 are equal
and y = �1 otherwise. This function is shown in Figure 7.

A first attempt at solving this function might define a linear model (like the log-linear

22

-1

+1

+1

-1

x
1

x
2

Figure 7: A function that cannot be solved by a linear transformation.

models from the previous chapter) that solves this problem using the following form:

y = Wx+ b. (33)

However, this class of functions is not powerful enough to represent the function at hand.13

Thus, we turn to a slightly more complicated class of functions taking the following form:

h = step(Wxhx+ bh)

y = whyh+ by. (34)

Computation is split into two stages: calculation of the hidden layer, which takes in input
x and outputs a vector of hidden variables h, and calculation of the output layer, which
takes in h and calculates the final result y. Both layers consist of an a�ne transform14

using weights W and biases b. In the case of the hidden layer, this is followed by a step(·)
function, which calculates the following:

step(x) =

(
1 if x > 0,

�1 otherwise.
(35)

This function is one example of a class of neural networks called multi-layer perceptrons
(MLPs). In general, MLPs consist one or more hidden layers that consist of an a�ne transform
followed by a non-linear function (such as the step function used here), culminating in an
output layer that calculates some variety of output.

Figure 8 demonstrates why this type of network does a better job of representing the
non-linear function of Figure 7. In short, we can see that the first hidden layer transforms
the input x into a hidden vector h in a di↵erent space that is more conducive for modeling
our final function. Specifically in this case, we can see that h is now in a space where we can
define a linear function (using wy and by) that correctly calculates the desired output y.

As mentioned above, MLPs are one specific variety of neural network. More generally,
neural networks can be thought of as a chain of functions (such as the a�ne transforms and
step functions used above, but also including many, many others) that takes some input and
calculates some desired output. The power of neural networks lies in the fact that chaining to-
gether a variety of simpler functions makes it possible to represent more complicated functions

13
Question: Prove this by trying to solve the system of equations.

14A fancy name for a matrix multiplication followed by an addition of a vector.

23

-1

+1

+1

-1

x
1

x
2

step

step

x
1

1

1

1

-1

-1

-1

-1

h
1

W
h,0

b
h,0

W
h,1

b
h,1

x = {1,1} →
h = {-1, 1}x

2

x
1

1

x
2 h

2

-1

+1

+1

h
1

h
2

x = {1,-1} →
h = {-1, -1}

x = {-1,1} →
h = {-1, -1}

x = {-1,-1} →
h = {1, -1}

h
1

1

1

1

1

y

W
y

b
y

h
2

Original input
variables Hidden layer Transformed variables Output layer

Figure 8: A simple neural network that represents the nonlinear function of Figure 7.

in an easily trainable, parameter-e�cient way. In fact, the simple single-layer MLP described
above is a universal function approximator [15], which means that it can approximate
any function to arbitrary accuracy if its hidden vector h is large enough.

We will see more about training in Section 5.3 and give some more examples of how
these can be more parameter e�cient in the discussion of neural network language models in
Section 5.5.

5.3 Training Neural Networks

Now that we have a model in Equation 34, we would like to train its parametersWmh, bh, why,
and by. To do so, remembering our gradient-based training methods from the last chapter,
we need to define the loss function `(·), calculate the derivative of the loss with respect to the
parameters, then take a step in the direction that will reduce the loss. For our loss function,
let’s use the squared-error loss, a commonly used loss function for regression problems
which measures the di↵erence between the calculated value y and correct value y⇤ as follows

`(y⇤, y) = (y⇤ � y)2. (36)

Next, we need to calculate derivatives. Here, we run into one problem: the step(·) function
is not very derivative friendly, with its derivative being:

dstep(x)

dx
=

(
undefined if x = 0,

0 otherwise.
(37)

Because of this, it is more common to use other non-linear functions, such as the hyperbolic
tangent (tanh) function. The tanh function, as shown in Figure 9, looks very much like
a softened version of the step function that has a continuous gradient everywhere, making
it more conducive to training with gradient-based methods. There are a number of other
alternatives as well, the most popular of which being the rectified linear unit (RelU)

RelU(x) =

(
x if x > 0,

0 otherwise.
(38)

24

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

relu(x)

y

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

tanh(x)

y

-4 -3 -2 -1 0 1 2 3 4

-2

-1

0

1

2

step(x)

y

Figure 9: Types of non-linearities.

shown in the left of Figure 9. In short, RelUs solve the problem that the tanh function gets
“saturated” and has very small gradients when the absolute value of input x is very large (x is
a large negative or positive number). Empirical results have often shown it to be an e↵ective
alternative to tanh, including for the language modeling task described in this chapter [28].

So let’s say we swap in a tanh non-linearity instead of the step function to our network,
we can now proceed to calculate derivatives like we did in Section 4.3. First, we perform the
full calculation of the loss function:

h0 = Wxhx+ bh

h = tanh(h0)

y = whyh+ by

` = (y⇤ � y)2. (39)

Then, again using the chain rule, we calculate the derivatives of each set of parameters:

d`

dby
=

d`

dy

dy

dby
d`

dwhy

=
d`

dy

dy

dwhy

d`

dbh
=

d`

dy

dy

dh

dh

dh0
dh0

dbh
d`

dWxh

=
d`

dy

dy

dh

dh

dh0
dh0

dWxh

. (40)

We could go through all of the derivations above by hand and precisely calculate the
gradients of all parameters in the model. Interested readers are free to do so, but even for a
simple model like the one above, it is quite a lot of work and error prone. For more complicated
models, like the ones introduced in the following chapters, this is even more the case.

Fortunately, when we actually implement neural networks on a computer, there is a very
useful tool that saves us a large portion of this pain: automatic di↵erentiation (autodi↵)
[30, 13].15 To understand automatic di↵erentiation, it is useful to think of our computation
in Equation 39 as a data structure called a computation graph, two examples of which are
shown in Figure 10. In these graphs, each node represents either an input to the network or
the result of one computational operation, such as a multiplication, addition, tanh, or squared
error. The first graph in the figure calculates the function of interest itself and would be used

15Specifically, reverse-mode automatic di↵erentiation.

25

W
h

x ×

b
h

+ tanh

w
y

×

b
y

+

y*

sqr_err �

W
h

x ×

b
h

+ tanh

w
y

×

b
y

+ y

Graph for the Training Objective

Graph for the Function Itself

Figure 10: Computation graphs for the function itself, and the loss function.

when we want to make predictions using our model, and the second graph calculates the loss
function and would be used in training.

Automatic di↵erentiation is a two-step dynamic programming algorithm that operates
over the second graph and performs:

• Forward calculation, which traverses the nodes in the graph in topological order,
calculating the actual result of the computation as in Equation 39.

• Back propagation, which traverses the nodes in reverse topological order, calculating
the gradients as in Equation 40.

The nice thing about this formulation is that while the overall function calculated by the
graph can be relatively complicated, as long as it can be created by combining multiple
simple nodes for which we are able to calculate the function f(x) and derivative f 0(x), we are
able to use automatic di↵erentiation to calculate its derivatives using this dynamic program
without doing the derivation by hand.

Thus, to implement a general purpose training algorithm for neural networks, it is neces-
sary to implement these two dynamic programs, as well as the atomic forward function and
backward derivative computations for each type of node that we would need to use. While this
is not trivial in itself, there are now a plethora of toolkits that either perform general-purpose
auto-di↵erentiation [3, 14], or auto-di↵erentiation specifically tailored for machine learning
and neural networks, including:

• Chainer (https://chainer.org; [25])

• DyNet (http://dynet.io; [21])

• MxNet (https://mxnet.apache.org; [8])

• PyTorch (https://pytorch.org; [22])

• TensorFlow (https://www.tensorflow.org; [1])

• Theano (http://deeplearning.net/software/theano/; [6])

26

These implement the data structures, nodes, back-propagation, and parameter optimization
algorithms needed to train neural networks in an e�cient and reliable way, allowing practi-
tioners to focus on designing their models without worrying too much about the underlying
computational details. Each toolkit has their own peculiarities and features that they focus
on, and excel in di↵erent ways.

In the following sections, we will take the approach of using these toolkits, specifically
at how to create our models of interest in the DyNet,16 toolkit, which has a programming
interface that makes it relatively easy to implement the sequence-to-sequence models covered
here.17

5.4 An Example Implementation

Figure 11 shows an example of implementing the above neural network in DyNet, which
we’ll step through line-by-line. Lines 1-2 import the necessary libraries. Lines 4-5 specify
parameters of the models: the size of the hidden vector h and the number of epochs (passes
through the data) for which we’ll perform training. Line 7 initializes a DyNet model, which
will store all the parameters we are attempting to learn. Lines 8-11 initialize parameters
Wxh, bh, why, and by to be the appropriate size so that dimensions in the equations for
Equation 39 match. Line 12 initializes a “trainer”, which will update the parameters in the
model according to an update strategy (here we use simple stochastic gradient descent, but
trainers for AdaGrad, Adam, and other strategies also exist). Line 14 creates the training
data for the function in Figure 7.

Lines 16-21 define a function that takes input x and creates a computation graph to
calculate Equation 39. First, line 17 creates a new computation graph to hold the computation
for this particular training example. Line 18 takes a Python list representing the current input
and puts it into the computation graph as a DyNet variable. Line 19 calculates the hidden
vector h, Line 20 calculates the value y, and Line 21 returns it.

Lines 23-32 perform training for NUM EPOCHS passes over the data (one pass through the
training data is usually called an “epoch”). Line 24 creates a variable to keep track of the loss
for this epoch for later reporting. Line 25 shu✏es the data, as recommended in Section 4.2.
Lines 26-31 perform stochastic gradient descent, looping over each of the training examples.
Line 27 creates a computation for the function itself, and Line 28 adds computation for the
loss function. Line 29 runs the forward calculation to calculate the loss and adds it to the loss
for this epoch. Line 30 runs back propagation, and Line 31 updates the model parameters.
At the end of the epoch, we print the loss for the epoch in Line 32 to make sure that the loss
is going down and our model is converging.

Finally, at the end of training in Lines 34-36, we print the output results. In an actual
scenario, this would be done on a separate set of test data.

5.5 Neural-network Language Models

Now that we have the basics down, it is time to apply neural networks to language modeling
[20, 4]. A feed-forward neural network language model is very much like the log-linear language

16http://github.com/clab/dynet
17It is also developed by the author of these materials, so the decision might have been a wee bit biased.

27

1 import dynet as dy

2 import random

3 # Parameters of the model and training

4 HIDDEN_SIZE = 20

5 NUM_EPOCHS = 20

6 # Define the model and SGD optimizer

7 model = dy.Model()

8 W_xh = model.addarameters((HIDDEN_SIZE, 2))

9 b_h = model.addarameters(HIDDEN_SIZE)

10 W_hy = model.addarameters((1, HIDDEN_SIZE))

11 b_y = model.addarameters(1)

12 trainer = dy.SimpleSGDTrainer(model)

13 # Define the training data, consisting of (x,y) tuples

14 data = [([1,1],1), ([-1,1],-1), ([1,-1],-1), ([-1,-1],1)]

15 # Define the function we would like to calculate

16 def calc_function(x):

17 dy.renew_cg()

18 x_val = dy.inputVector(x)

19 h_val = dy.tanh(w_xh * x_val + b_h)

20 y_val = W_hy * h_val + b_y

21 return y_val

22 # Perform training

23 for epoch in range(NUM_EPOCHS):

24 epoch_loss = 0

25 random.shuffle(data)

26 for x, ystar in data:

27 y = calc_function(x)

28 loss = dy.squared_distance(y, dy.scalarInput(ystar))

29 epoch_loss += loss.value()

30 loss.backward()

31 trainer.update()

32 print("Epoch %d: loss=%f" % (epoch, epoch_loss))

33 # Print results of prediction

34 for x, ystar in data:

35 y = calc_function(x)

36 print("%r -> %f" % (x, y.value()))

Figure 11: An example of training a neural network for a multi-layer perceptron using the
toolkit DyNet.

28

M

lookup(e
t-1
)

lookup(e
t-2
)

concat

W
h
b
h

x +

W
p
b
p

x +tanh softmax p

Figure 12: A computation graph for a tri-gram feed-forward neural language model.

model that we mentioned in the previous section, simply with the addition of one or more
non-linear layers before the output.

First, let’s recall the tri-gram log-linear language model. In this case, assume we have two
sets of features expressing the identity of et�1 (represented as W (1)) and et�2 (as W (2)), the
equation for the log-linear model looks like this:

s = W (1)
·,et�1 +W (2)

·,et�2 + b

p = softmax(s), (41)

where we add the appropriate columns from the weight matricies to the bias to get the score,
then take the softmax to turn it into a probability.

Compared to this, a tri-gram neural network model with a single layer is structured as
shown in Figure 12 and described in equations below:

m = concat(M·,et�2 ,M·,et�1)

h = tanh(Wmhm+ bh)

s = Whsh+ bs

p = softmax(s) (42)

In the first line, we obtain a vector m representing the context ei�1
i�n+1 (in the particular

case above, we are handling a tri-gram model so n = 3). Here, M is a matrix with |V | columns,
and Lm rows, where each column corresponds to an Lm-length vector representing a single
word in the vocabulary. This vector is called aword embedding or aword representation,
which is a vector of real numbers corresponding to particular words in the vocabulary.18 The
interesting thing about expressing words as vectors of real numbers is that each element of
the vector could reflect a di↵erent aspect of the word. For example, there may be an element
in the vector determining whether a particular word under consideration could be a noun, or
another element in the vector expressing whether the word is an animal, or another element
that expresses whether the word is countable or not.19 Figure 13 shows an example of how
to define parameters that allow you to look up a vector in DyNet.

The vector m then results from the concatenation of the word vectors for all of the words
in the context, so |m| = Lm ⇤ (n � 1). Once we have this m, we run the vectors through
a hidden layer to obtain vector h. By doing so, the model can learn combination features

18For the purposes of the model in this chapter, these vectors can basically be viewed as one set of tunable
parameters in the neural language model, but there has also been a large amount of interest in learning these
vectors for use in other tasks. Some methods are outlined in Section 5.6.

19In reality, it is rare that single elements in the vector have such an intuitive meaning unless we impose
some sort of constraint, such as sparsity constraints [19].

29

1 # Define the lookup parameters at model definition time

2 # VOCAB_SIZE is the number of words in the vocabulary

3 # EMBEDDINGS_SIZE is the length of the word embedding vector

4 M_p = model.add_lookup_parameters((VOCAB_SIZE, EMBEDDING_SIZE))

5 # Load the parameters into the computation graph

6 M = dy.lookup(M_p)

7 # And look up the vector for word i

8 m = M[i]

Figure 13: Code for looking things up in DyNet.

that reflect information regarding multiple words in the context. This allows the model to
be expressive enough to represent the more di�cult cases in Figure 6. For example, given a
context is “cows eat”, and some elements of the vector M·,cows identify the word as a “large
farm animal” (e.g. “cow”, “horse”, “goat”), while some elements of M·,eat corresponds to
“eat” and all of its relatives (“consume”, “chew”, “ingest”), then we could potentially learn
a unit in the hidden layer h that is active when we are in a context that represents “things
farm animals eat”.

Next, we calculate the score vector for each word: s 2 R|V |. This is done by performing an
a�ne transform of the hidden vector h with a weight matrix Whs 2 R|V |⇥|h| and adding a bias
vector bs 2 R|V |. Finally, we get a probability estimate p by running the calculated scores
through a softmax function, like we did in the log-linear language models. For training, if we
know et we can also calculate the loss function as follows, similarly to the log-linear model:

` = � log(pet). (43)

DyNet has a convenience function that, given a score vector s, will calculate the negative log
likelihood loss:

1 loss = dy.pickneglogsoftmax(s, e_t)

The reasons why the neural network formulation is nice becomes apparent when we com-
pare this to n-gram language models in Section 3:

Better generalization of contexts: n-gram language models treat each word as its own
discrete entity. By using input embeddings M , it is possible to group together similar
words so they behave similarly in the prediction of the next word. In order to do the
same thing, n-gram models would have to explicitly learn word classes and using these
classes e↵ectively is not a trivial problem [7].

More generalizable combination of words into contexts: In an n-gram language model,
we would have to remember parameters for all combinations of {cow, horse, goat} ⇥

{consume, chew, ingest} to represent the context “things farm animals eat”. This would
be quadratic in the number of words in the class, and thus learning these parameters

30

is di�cult in the face of limited training data. Neural networks handle this problem by
learning nodes in the hidden layer that can represent this quadratic combination in a
feature-e�cient way.

Ability to skip previous words: n-gram models generally fall back sequentially from longer
contexts (e.g. “the two previous words et�1

t�2”) to shorter contexts (e.g. “the previous
words et�1”), but this doesn’t allow them to “skip” a word and only reference for exam-
ple, “the word two words ago et�2”. Log-linear models and neural networks can handle
this skipping naturally.

5.6 Further Reading

In addition to the methods described above, there are a number of extensions to neural-
network language models that are worth discussing.

Softmax approximations: One problem with the training of log-linear or neural network
language models is that at every training example, they have to calculate the large score
vector s, then run a softmax over it to get probabilities. As the vocabulary size |V |

grows larger, this can become quite time-consuming. As a result, there are a number
of ways to reduce training time. One example are methods that sample a subset of the
vocabulary V 0

2 V where |V 0
| ⌧ V , then calculate the scores and approximate the loss

over this smaller subset. Examples of these include methods that simply try to get the
true word et to have a higher score (by some margin) than others in the subsampled
set [9] and more probabilistically motivated methods, such as importance sampling
[5] or noise-contrastive estimation (NCE; [18]). Interestingly, for other objective
functions such as linear regression and special variety of softmax called the spherical
softmax, it is possible to calculate the objective function in ways that do not scale
linearly with the vocabulary size [29].

Other softmax structures: Another interesting trick to improve training speed or accu-
racy is to create a softmax that is structured so that its loss functions can be computed
e�ciently. One way to do so is the class-based softmax [12], which assigns each word et
to a class ct, then divides computation into two steps: predicting the probability of class
ct given the context, then predicting the probability of the word et given the class and
the current context P (et | ct, e

t�1
t�n+1)P (ct | e

t�1
t�n+1). The advantage of this method is

that we only need to calculate scores for the correct class ct out of |C| classes, then the
correct word et out of the vocabulary for class ct, which is size |Vct |. Thus, our computa-
tional complexity becomes O(|C|+ |Vct |) instead of O(|V |).20 The hierarchical softmax
[17] takes this a step further by predicting words along a binary-branching tree, which
results in a computational complexity of O(log2|V |). Finally, [31] hypothesize that the
standard softmax lacks the expressive power to model language properly, and propose
a method called “mixture of softmaxes,” which calculates multiple contexts and lin-
early interpolates between the resulting probability distributions, achieving impressive
results.

20
Question: What is the ideal class size to achieve the best computational e�ciency?

31

Other models to learn word representations: As mentioned in Section 5.5, we learn
word embeddings M as a by-product of training our language models. One very nice
feature of word representations is that language models can be trained purely on raw
text, but the resulting representations can capture semantic or syntactic features of the
words, and thus can be used to e↵ectively improve down-stream tasks that don’t have
a lot of annotated data, such as part-of-speech tagging or parsing [26].21 Because of
their usefulness, there have been an extremely large number of approaches proposed to
learn di↵erent varieties of word embeddings,22 from early work based on distributional
similarity and dimensionality reduction [24, 27] to more recent models based on predic-
tive models similar to language models [26, 16], with the general current thinking being
that predictive models are the more e↵ective and flexible of the two [2].The most well-
known methods are the continuous-bag-of-words and skip-gram models implemented
in the software word2vec,23 which define simple objectives for predicting words using
the immediately surrounding context or vice-versa. word2vec uses a sampling-based
approach and parallelization to easily scale up to large datasets, which is perhaps the
primary reason for its popularity. One thing to note is that these methods are not
language models in themselves, as they do not calculate a probability of the sentence
P (E), but many of the parameter estimation techniques can be shared.

5.7 Exercise

In the exercise for this chapter, we will use DyNet to construct a feed-forward language model
and evaluate its performance.

Writing the program will entail:

• Writing a function to read in the data and (turn it into numerical IDs).

• Writing a function to calculate the loss function by looking up word embeddings, then
running them through a multi-layer perceptron, then predicting the result.

• Writing code to perform training using this function.

• Writing evaluation code that measures the perplexity on a held-out data set.

Language modeling accuracy should be measured in the same way as previous exercises and
compared with the previous models.

Potential improvements to the model include tuning the various parameters of the model.
How big should h be? Should we add additional hidden layers? What optimizer with what
learning rate should we use? What happens if we implement one of the more e�cient versions
of the softmax explained in Section 5.6?

21Manning (2015) called word embeddings the “Sriracha sauce of NLP”, because you
can add them to anything to make it better http://nlp.stanford.edu/~manning/talks/
NAACL2015-VSM-Compositional-Deep-Learning.pdf

22So many that Daumé III (2016) called word embeddings the “Sriracha sauce of NLP: it sounds
like a good idea, you add too much, and now you’re crying” https://twitter.com/haldaume3/status/
706173575477080065

23https://code.google.com/archive/p/word2vec/

32

References

[1] Martın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Je↵rey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors. In Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics (ACL), pages 238–247,
Baltimore, Maryland, June 2014. Association for Computational Linguistics.

[3] Claus Bendtsen and Ole Stauning. Fadbad, a flexible c++ package for automatic di↵erentiation.
Department of Mathematical Modelling, Technical University of Denmark, 1996.

[4] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc Gauvain.
Neural probabilistic language models. In Innovations in Machine Learning, volume 194, pages
137–186. 2006.

[5] Yoshua Bengio and Jean-Sébastien Senécal. Adaptive importance sampling to accelerate training
of a neural probabilistic language model. IEEE Transactions on Neural Networks, 19(4):713–722,
2008.

[6] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume
Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: A CPU and GPU
math compiler in Python. In Proc. 9th Python in Science Conf, pages 1–7, 2010.

[7] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.
Class-based n-gram models of natural language. Comput. Linguist., 18(4):467–479, 1992.

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,
Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and e�cient machine learning library for
heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.

[9] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of Machine Learning Research,
12:2493–2537, 2011.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

[11] Yoav Goldberg. A primer on neural network models for natural language processing. arXiv
preprint arXiv:1510.00726, 2015.

[12] Joshua Goodman. Classes for fast maximum entropy training. In Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), pages 561–564. IEEE, 2001.

[13] Andreas Griewank. Automatic di↵erentiation of algorithms: theory, implementation, and appli-
cation. In proceedings of the first SIAM Workshop on Automatic Di↵erentiation, 1991.

[14] Robin J Hogan. Fast reverse-mode automatic di↵erentiation using expression templates in c++.
ACM Transactions on Mathematical Software (TOMS), 40(4):26, 2014.

[15] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Je↵rey Dean. E�cient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je↵ Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Proceedings of the 27th Annual
Conference on Neural Information Processing Systems (NIPS), pages 3111–3119, 2013.

33

[18] Andriy Mnih and Yee Whye Teh. A fast and simple algorithm for training neural probabilistic
language models. arXiv preprint arXiv:1206.6426, 2012.

[19] Brian Murphy, Partha Talukdar, and Tom Mitchell. Learning e↵ective and interpretable semantic
models using non-negative sparse embedding. In Proceedings of the 24th International Conference
on Computational Linguistics (COLING), pages 1933–1950, 2012.

[20] Masami Nakamura, Katsuteru Maruyama, Takeshi Kawabata, and Kiyohiro Shikano. Neural
network approach to word category prediction for English texts. In Proceedings of the 13th
International Conference on Computational Linguistics (COLING), 1990.

[21] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anas-
tasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, Kevin Duh, Man-
aal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong, Adhiguna Kuncoro, Gau-
rav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. Dynet: The dynamic neural network toolkit. arXiv
preprint arXiv:1701.03980, 2017.

[22] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic di↵erentiation in
pytorch. 2017.

[23] David E Rumelhart, Geo↵rey E Hinton, and Ronald J Williams. Learning representations by
back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[24] Hinrich Sch utze. Word space. 5:895–902, 1993.

[25] Seiya Tokui, Kenta Oono, Shohei Hido, and Justin Clayton. Chainer: a next-generation open
source framework for deep learning. In Proceedings of Workshop on Machine Learning Systems
(LearningSys) in The Twenty-ninth Annual Conference on Neural Information Processing Systems
(NIPS), 2015.

[26] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and general
method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics (ACL), pages 384–394. Association for Computational Linguistics,
2010.

[27] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space models of semantics.
Journal of Artificial Intelligence Research, 37:141–188, 2010.

[28] Ashish Vaswani, Yinggong Zhao, Victoria Fossum, and David Chiang. Decoding with large-scale
neural language models improves translation. In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 1387–1392, 2013.

[29] Pascal Vincent, Alexandre de Brébisson, and Xavier Bouthillier. E�cient exact gradient update
for training deep networks with very large sparse targets. In Proceedings of the 29th Annual
Conference on Neural Information Processing Systems (NIPS), pages 1108–1116, 2015.

[30] R.E. Wengert. A simple automatic derivative evaluation program. Communications of the ACM,
7(8):463–464, 1964.

[31] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and William W Cohen. Breaking the softmax
bottleneck: A high-rank rnn language model. 2018.

34

