
7 Neural MT 1: Neural Encoder-Decoder Models

From Section 3 to Section 6, we focused on the language modeling problem of calculating
the probability P (E) of a sequence E. In this section, we return to the statistical machine
translation problem (mentioned in Section 2) of modeling the probability P (E | F ) of the
output E given the input F .

7.1 Encoder-decoder Models

The first model that we will cover is called an encoder-decodermodel [5, 9, 10, 15]. The basic
idea of the model is relatively simple: we have an RNN language model, but before starting
calculation of the probabilities of E, we first calculate the initial state of the language model
using another RNN over the source sentence F . The name “encoder-decoder” comes from
the idea that the first neural network running over F “encodes” its information as a vector
of real-valued numbers (the hidden state), then the second neural network used to predict E
“decodes” this information into the target sentence.
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Figure 21: A computation graph of the encoder-decoder model.

If the encoder is expressed as RNN(f)(·), the decoder is expressed as RNN(e)(·), and we
have a softmax that takes RNN(e)’s hidden state at time step t and turns it into a probability,
then our model is expressed as follows (also shown in Figure 21):
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In the first two lines, we look up the embedding m(f)
t

and calculate the encoder hidden state

h(f)
t

for the tth word in the source sequence F . We start with an empty vector h(f)
0 = 0, and
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by h(f)
|F |, the encoder has seen all the words in the source sentence. Thus, this hidden state

should theoretically be able to encode all of the information in the source sentence.
In the decoder phase, we predict the probability of word et at each time step. First, we

similarly look up m(e)
t

, but this time use the previous word et�1, as we must condition the
probability of et on the previous word, not on itself. Then, we run the decoder to calculate

h(e)
t

. This is very similar to the encoder step, with the important di↵erence that h(e)
0 is set

to the final state of the encoder h(f)
|F |, allowing us to condition on F . Finally, we calculate the

probability p(e)
t

by using a softmax on the hidden state h(e)
t

.
While this model is quite simple (only 5 lines of equations), it gives us a straightforward

and powerful way to model P (E | F ). In fact, [15] have shown that a model that follows
this basic pattern is able to perform translation with similar accuracy to heavily engineered
systems specialized to the machine translation task (although it requires a few tricks over
the simple encoder-decoder that we’ll discuss in later sections: beam search (Section 7.2), a
di↵erent encoder (Section 7.3), and ensembling (??)).

7.2 Generating Output

At this point, we have only mentioned how to create a probability model P (E | F ) and haven’t
yet covered how to actually generate translations from it, which we will now cover in the next
section. In general, when we generate output we can do so according to several criteria:

Random Sampling: Randomly select an output E from the probability distribution P (E |

F ). This is usually denoted Ê ⇠ P (E | F ).

1-best Search: Find the E that maximizes P (E | F ), denoted Ê = argmax
E

P (E | F ).

n-best Search: Find the n outputs with the highest probabilities according to P (E | F ).

Which of these methods we will choose will depend on our application, so we will discuss some
use cases along with the algorithms themselves.

7.2.1 Random Sampling

First, random sampling is useful in cases where we may want to get a variety of outputs for
a particular input. One example of a situation where this is useful would be in a sequence-
to-sequence model for a dialog system, where we would prefer the system to not always give
the same response to a particular user input to prevent monotony. Luckily, in models like the
encoder-decoder above, it is simple to exactly generate samples from the distribution P (E | F )
using a method called ancestral sampling. Ancestral sampling works by sampling variable
values one at a time, gradually conditioning on more context, so at time step t, we will
sample a word from the distribution P (et | ê

t�1
1 ). In the encoder-decoder model, this means

we simply have to calculate pt according to the previously sampled inputs, leading to the
simple generation algorithm in Algorithm 3.

One thing to note is that sometimes we also want to know the probability of the sentence
that we sampled. For example, given a sentence Ê generated by the model, we might want to
know how certain the model is in its prediction. During the sampling process, we can calculate

P (Ê | F ) =
Q|Ê|

t
P (êt | F, Ê

t�1
1 ) incrementally by stepping along and multiplying together
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the probabilities of each sampled word. However, as we remember from the discussion of
probability vs. log probability in Section 3.3, using probabilities as-is can result in very small
numbers that cause numerical precision problems on computers. Thus, when calculating the
full-sentence probability it is more common to instead add together log probabilities for each
word, which avoids this problem.

Algorithm 3 Generating random samples from a neural encoder-decoder
1: procedure Sample
2: for t from 1 to |F | do

3: Calculate m(f)
t

and h(f)
t

4: end for
5: Set ê0 =“hsi” and t 0
6: while êt 6=“h/si” do
7: t t+ 1
8: Calculate m(e)

t
, h(e)

t
, and p(e)

t
from êt�1

9: Sample êt according to p(e)
t

10: end while
11: end procedure

7.2.2 Greedy 1-best Search

Next, let’s consider the problem of generating a 1-best result. This variety of generation is
useful in machine translation, and most other applications where we simply want to output
the translation that the model thought was best. The simplest way of doing so is greedy
search, in which we simply calculate pt at every time step, select the word that gives us
the highest probability, and use it as the next word in our sequence. In other words, this
algorithm is exactly the same as Algorithm 3, with the exception that on Line 9, instead of

sampling êt randomly according to p(e)
t

, we instead choose the max: êt = argmax
i

p(e)
t,i

.

Interestingly, while ancestral sampling exactly samples outputs from the distribution ac-
cording to P (E | F ), greedy search is not guaranteed to find the translation with the highest
probability. An example of a case in which this is true can be found in the graph in Fig-
ure 22, which is an example of search graph with a vocabulary of {a, b, h/si}.28 As an
exercise, I encourage readers to find the true 1-best (or n-best) sentence according to the
probability P (E | F ) and the probability of the sentence found according to greedy search
and confirm that these are di↵erent.

7.2.3 Beam Search

One way to solve this problem is through the use of beam search. Beam search is similar
to greedy search, but instead of considering only the one best hypothesis, we consider b best
hypotheses at each time step, where b is the “width” of the beam. An example of beam search
where b = 2 is shown in Figure 23 (note that we are using log probabilities here because they

28In reality, we will never have a probability of exactly P (et = h/si | F, et�1
1 ) = 1.0, but for illustrative

purposes, we show this here.
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Figure 22: A search graph where greedy search fails.
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are more conducive to comparing hypotheses over the entire sentence, as mentioned before).
In the first time step, we expand hypotheses for e1 corresponding to all of the three words in
the vocabulary, then keep the top two (“b” and “a”) and delete the remaining one (“h/si”).
In the second time step, we expand hypotheses for e2 corresponding to the continuation of the
first hypotheses for all words in the vocabulary, temporarily creating b⇤ |V | active hypotheses.
These active hypotheses are also pruned down to the b active hypotheses (“a b” and “b b”).
This process of calculating scores for b ⇤ |V | continuations of active hypotheses, then pruning
back down to the top b, is continued until the end of the sentence.

7.2.4 Length Normalization

One thing to be careful about when generating sentences using models, such as neural ma-

chine translation, where P (E | F ) =
Q|E|

t
P (et | F, e

t�1
1 ) is that they tend to prefer shorter

sentences. This is because every time we add another word, we multiply in another probabil-
ity, reducing the probability of the whole sentence. As we increase the beam size, the search
algorithm gets better at finding these short sentences, and as a result, beam search with a
larger beam size often has a significant length bias towards these shorter sentences.

There have been several attempts to fix this length bias problem. For example, it is
possible to put a prior probability on the length of the sentence given the length of the source
sentence P (|E| | |F |), and multiply this with the standard sentence probability P (E | F ) at
decoding time [8]:

Ê = argmax
E

logP (|E| | |F |) + logP (E | F ). (61)

This prior probability can be estimated from data, and [8] simply estimate this using a
multinomial distribution learned on the training data:

P (|E| | |F |) =
c(|E|, |F |)

c(|F |)
. (62)

A more heuristic but still widely used approach normalizes the log probability by the length
of the target sentence, e↵ectively searching for the sentence that has the highest average log
probability per word [4]:

Ê = argmax
E

logP (E | F )/|E|. (63)

7.3 Bidirectional Encoders

In Section 7.1, we described a model that works by encoding sequences linearly, one word at
a time from left to right. However, this may not be the most natural or e↵ective way to turn
the sentence F into a vector h.

The first solution to this problem is due to [15], the reverse encoder. In this method,
we simply run a standard linear encoder over F , but instead of doing so from left to right, we
do so from right to left.

 �
h (f)

t
=

(
 ���
RNN(f)(m(f)

t
,
 �
h (f)

t+1) t  |F |,

0 otherwise.
(64)

The motivation behind this method is that for pairs of languages with similar ordering (such
as English-French, which the authors experimented on), the words at the beginning of F will
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Figure 24: The distances between words with the same index in the forward and reverse
decoders.

generally correspond to words at the beginning of E. Assuming the extreme case that words
with identical indices correspond to each-other (e.g. f1 corresponds to e1, f2 to e2, etc.), the
distance between corresponding words in the linear encoding and decoding will be |F |, as
shown in Figure 24(a). Remembering the vanishing gradient problem from Section 6.3, this
means that the RNN has to propagate the information across |F | time steps before making a
prediction, a di�cult feat. At the beginning of training, even RNN variants such as LSTMs
have trouble, as they have to essentially “guess” what part of the information encoded in their
hidden state is being used without any prior bias.

Reversing the encoder helps solve this problem by reducing the length of dependencies for
a subset of the words in the sentence, specifically the ones at the beginning of the sentences.
As shown in Figure 24(b), the length of the dependency for f1 and e1 is 1, and subsequent
pairs of ft and et have a distance of 2t�1. During learning, the model can “latch on” to these
short-distance dependencies and use them as a way to bootstrap the model training, after
which it becomes possible to gradually learn the longer dependencies for the words at the end
of the sentence. In [15], this proved critical to learn e↵ective models in the encoder-decoder
framework.

However, this approach of reversing the encoder relies on the strong assumption that the
order of words in the input and output sequences are very similar, or at least that the words
at the beginning of sentences are the same. This is true for languages like English and French,
which share the same “subject-verb-object (SVO)” word ordering, but may not be true for
more typologically distinct languages. One type of encoder that is slightly more robust to
these di↵erences is the bi-directional encoder [2]. In this method, we use two di↵erent
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encoders: one traveling forward and one traveling backward over the input sentence
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which are then combined into the initial vector h(e)
0 for the decoder RNN. This combination

can be done by simply concatenating the two final vectors
�!
h |F | and

 �
h 1. However, this also

requires that the size of the vectors for the decoder RNN be exactly equal to the combined
size of the two encoder RNNs. As a more flexible alternative, we can add an additional
parameterized hidden layer between the encoder and decoder states, which allows us to convert
the bidirectional encoder states into an appropriately-sized state for the decoder:

h(e)
0 = tanh(W�!

f e

�!
h |F | +W �

f e

 �
h 1 + be). (67)

7.4 Sentence Embedding Methods

One interesting feature of the encoder-decoder model is that it compresses an entire input

sentence F to a single vector h(f)
|F |. Having a mapping function of this variety can be useful

in other downstream tasks. For example, in text classification, we can use the encoder to

obtain the hidden vector h(f)
|F |, then run this vector itself through a classifier to predict some

other feature of the text, such as topic or sentiment. An advantage of this paradigm is
that translation data is relatively easy to come by compared to data manually labeled with
sentiment or topic labels, and thus a translation system can be used to pre-train the encoder
for use in this downstream task.

In addition, it is common to train these models using other varieties of data as well:

Auto-encoding: The parameters are trained on a plain text corpus, where the encoder
encodes a sentence into a single vector, and the decoder tries to re-generate the sentence
itself [7].

Language modeling: Similarly, the parameters are trained on a plain text corpus, where
after each time step in the encoder tries to predict the word using the previously-
described RNN language models. This is used as a pre-training step, and the model can
then be fine-tuned on the actual task (such as text classification) [7]. This variety of
language-model-based pre-training has proven an e↵ective way to improve translation
systems as well [14].

Predicting context: Parameters are trained on a corpus of documents, where the encoder
encodes a sentence, and two decoders try to predict the previous and next sentences
[11].

Predicting paraphrases: Parameters are trained on a corpus of paraphrases, where the
encoder is trained to make the vectors of paraphrases closer together than the vectors
of non-paraphrases [16].
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Predicting sentence features: Parameters are trained on data with supervised labels of
some variety, such as entailment relations between multiple sentences [6].

These methods are a specific variety of multi-task learning, where we use training data for
one task to improve accuracy on another, which will be covered more extensively in Section 21.

7.5 Further Reading

First, a brief historical note on neural machine translation models. [1] first proposed the
idea of performing translation using neural networks, with a simple feed-forward model that
mapped between short sentences. [5] further expanded this to recurrent networks, which more
closely represent those that proved successful in [15]’s experiments. The first example of fully
neural models for translation in the modern era of deep learning is due to [10], which used
convolutional networks, to be covered in the following chapters. This was followed shortly
thereafter by [15], which popularized neural MT due to impressive empirical performance,
which can be largely attributed to the switch from RNNs to deep LSTMs, reverse encoder,
use of beam search and ensembling, etc.

In addition, in this chapter, we illustrated in particular detail search algorithms such as
beam search. Beam search based methods can further be improved with the introduction of a
future cost, which predicts how likely particular search paths are to succeed [12]. It is also
possible to start from a greedy search, then gradually expand search paths that look most
promising [3].

7.6 Exercise

In the exercise for this chapter, we will create an encoder-decoder translation model and make
it possible to generate translations.

Writing the program will entail:

• Extend your RNN language model code to first read in a source sentence to calculate
the initial hidden state.

• On the training set, write code to calculate the loss function and perform training.

• On the development set, generate translations using greedy search.

• Evaluate your generated translations by comparing them to the reference translations
to see if they look good or not. Translations can also be evaluated by automatic means,
such as BLEU score [13]. A reference implementation of a BLEU evaluation script can be
found here: https://github.com/moses-smt/mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl.

Potential improvements to the model include: Implementing beam search and comparing
the results with greedy search. Implementing an alternative encoder.
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