
8 Neural MT 2: Attentional Neural MT

In the past chapter, we described a simple model for neural machine translation, which uses
an encoder to encode sentences as a fixed-length vector. However, in some ways, this view
is overly simplified, and by the introduction of a powerful mechanism called attention, we
can overcome these di�culties. This section describes the problems with the encoder-decoder
architecture and what attention does to fix these problems.

8.1 Problems of Representation in Encoder-Decoders

Theoretically, a su�ciently large and well-trained encoder-decoder model should be able to
perform machine translation perfectly. As mentioned in Section 5.2, neural networks are
universal function approximators, meaning that they can express any function that we wish
to model, including a function that accurately predicts our predictive probability for the next
word P (et | F, e

t�1
1 ). However, in practice, it is necessary to learn these functions from limited

data, and when we do so, it is important to have a proper inductive bias – an appropriate
model structure that allows the network to learn to model accurately with a reasonable amount
of data.

There are two things that are worrying about the standard encoder-decoder architecture.
The first was described in the previous section: there are long-distance dependencies between
words that need to be translated into each other. In the previous section, this was alleviated
to some extent by reversing the direction of the encoder to bootstrap training, but still, a
large number of long-distance dependencies remain, and it is hard to guarantee that we will
learn to handle these properly.

The second, and perhaps more, worrying aspect of the encoder-decoder is that it attempts
to store information sentences of any arbitrary length in a hidden vector of fixed size. In other
words, even if our machine translation system is expected to translate sentences of lengths
from 1 word to 100 words, it will still use the same intermediate representation to store all
of the information about the input sentence. If our network is too small, it will not be able
to encode all of the information in the longer sentences that we will be expected to translate.
On the other hand, even if we make the network large enough to handle the largest sentences
in our inputs, when processing shorter sentences, this may be overkill, using needlessly large
amounts of memory and computation time. In addition, because these networks will have
large numbers of parameters, it will be more di�cult to learn them in the face of limited data
without encountering problems such as overfitting.

The remainder of this section discusses a more natural way to solve the translation problem
with neural networks: attention.

8.2 Attention

The basic idea of attention is that instead of attempting to learn a single vector representation
for each sentence, we instead keep around vectors for every word in the input sentence, and
reference these vectors at each decoding step. Because the number of vectors available to
reference is equivalent to the number of words in the input sentence, long sentences will have
many vectors and short sentences will have few vectors. As a result, we can express input
sentences in a much more e�cient way, avoiding the problems of ine�cient representations
for encoder-decoders mentioned in the previous section.

57



Figure 25: An example of attention from [2]. English is the source, French is the target, and
a higher attention weight when generating a particular target word is indicated by a lighter
color in the matrix.

First we create a set of vectors that we will be using as this variably-lengthed represen-
tation. To do so, we calculate a vector for every word in the source sentence by running an
RNN in both directions:
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Then we concatenate the two vectors
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We can further concatenate these vectors into a matrix:

H(f) = concat col(h(f)
1 , . . . ,h(f)

|F |). (70)

This will give us a matrix where every column corresponds to one word in the input sentence.
However, we are now faced with a di�culty. We have a matrix H(f) with a variable

number of columns depending on the length of the source sentence, but would like to use this
to compute, for example, the probabilities over the output vocabulary, which we only know
how to do (directly) for the case where we have a vector of input. The key insight of attention
is that we calculate a vector ↵t that can be used to combine together the columns of H into
a vector ct

ct = H(f)↵t. (71)
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↵t is called the attention vector, and is generally assumed to have elements that are between
zero and one and add to one.

The basic idea behind the attention vector is that it is telling us how much we are “fo-
cusing” on a particular source word at a particular time step. The larger the value in ↵t, the
more impact a word will have when predicting the next word in the output sentence. An ex-
ample of how this attention plays out in an actual translation example is shown in Figure 25,
and as we can see the values in the alignment vectors generally align with our intuition.

8.3 Calculating Attention Scores

The next question then becomes, from where do we get this ↵t? The answer to this lies in
the decoder RNN, which we use to track our state while we are generating output. As before,

the decoder’s hidden state h(e)
t

is a fixed-length continuous vector representing the previous

target words et�1
1 , initialized as h(e)

0 = h(f)
|F |+1. This is used to calculate a context vector ct

that is used to summarize the source attentional context used in choosing target word et, and
initialized as c0 = 0.

First, we update the hidden state to h(e)
t

based on the word representation and context
vectors from the previous target time step

h(e)
t

= dec([embed(et�1); ct�1],h
(e)
t�1). (72)

Based on this h(e)
t

, we calculate an attention score at, with each element equal to

at,j = attn score(h(f)
j

,h(e)
t

). (73)

attn score(·) can be an arbitrary function that takes two vectors as input and outputs a score

about how much we should focus on this particular input word encoding h(f)
j

at the time step

h(e)
t

. We describe some examples at a later point in Section 8.4.
We then normalize this into the actual attention vector itself by taking a softmax over the

scores:
↵t = softmax(at). (74)

This attention vector is then used to weight the encoded representation H(f) to create a
context vector ct for the current time step, as mentioned in Equation 71.

We now have a context vector ct and hidden state h(e)
t

for time step t, which we can pass
on down to downstream tasks. For example, we can concatenate both of these together when
calculating the softmax distribution over the next words:

p(e)
t

= softmax(Whs[h
(e)
t

; ct] + bs). (75)

It is worth noting that this means that the encoding of each source word h(f)
j

is considered
much more directly in the calculation of output probabilities. In contrast to the encoder-
decoder, where the encoder-decoder will only be able to access information about the first
encoded word in the source by passing it over |F | time steps, here the source encoding is
accessed (in a weighted manner) through the context vector Equation 71.

This whole, rather involved, process is shown in Figure 26.

59



this ais pen

lookup lookup lookup lookup

RNN RNN RNN RNN

RNN RNN RNN RNN

0

0

concatconcatconcatconcat

concat_col

h
t attn_score softmax x

concat softmax(x+) p
t

Figure 26: A computation graph for attention.

8.4 Ways of Calculating Attention Scores

As mentioned in Equation 73, the final missing piece to the puzzle is how to calculate the
attention score at,j .

[8] test three di↵erent attention functions, all of which have their own merits:

Dot product: This is the simplest of the functions, as it simply calculates the similarity

between h(e)
t

and h(f)
j

as measured by the dot product:

attn score(h(f)
j

,h(e)
t

) := h(f)|
j

h(e)
t

. (76)

This model has the advantage that it adds no additional parameters to the model.
However, it also has the intuitive disadvantage that it forces the input and output

encodings to be in the same space (because similar h(e)
t

and h(f)
j

must be close in space
in order for their dot product to be high). It should also be noted that the dot product
can be calculated e�ciently for every word in the source sentence by instead defining
the attention score over the concatenated matrix H(f) as follows:

attn score(H(f),h(e)
t

) := H(f)|
j

h(e)
t

. (77)

Combining the many attention operations into one can be useful for e�cient impemen-
tation, especially on GPUs. The following attention functions can also be calculated
like this similarly.29

Scaled dot product: One problem with the dot product is that it its value is highly de-
pendent on the size of the hidden vector, with larger hidden vectors resulting in larger
dot-product values (all else being equal). This can be problematic, because if the overall
scale of the values going into the softmax function in Equation 74 are larger, then the

29
Question: What do the equations look like for the combined versions of the following functions?
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distribution will be peakier, putting more probability on the word with the highest at-
tention value. This can be detrimental for learning. To fix this problem, [12] propose a
scaled dot product attention function that scales the dot product value by the square
root of the size of the vector.

attn score(h(f)
j

,h(e)
t

) :=
h(f)|
j

h(e)
tq

|h(e)
t

|

. (78)

This helps reduce this e↵ect, making training more stable at all hidden vector sizes.

Bilinear functions: One slight modification to the dot product that is more expressive is the
bilinear function. This function helps relax the restriction that the source and target
embeddings must be in the same space by performing a linear transform parameterized
by Wa before taking the dot product:

attn score(h(f)
j

,h(e)
t

) := h(f)|
j

Wah
(e)
t

. (79)

This has the advantage that if Wa is not a square matrix, it is possible for the two
vectors to be of di↵erent sizes, so it is possible for the encoder and decoder to have
di↵erent dimensions. However, it does introduce quite a few parameters to the model
(|h(f)

|⇥ |h(e)
|), which may be di�cult to train properly.

Multi-layer perceptrons: Finally, it is also possible to calculate the attention score us-
ing a multi-layer perceptron, which was the method employed by [2] in their original
implementation of attention:

attn score(h(e)
t

,h(f)
j

) := w|
a2tanh(Wa1[h

(e)
t

;h(f)
j

]), (80)

where Wa1 and wa2 are the weight matrix and vector of the first and second layers of
the MLP respectively. This is more flexible than the dot product method, usually has
fewer parameters than the bilinear method, and generally provides good results.

In addition to these methods above, which are essentially the defacto-standard, there are
a few more sophisticated methods for calculating attention as well. For example, it is possible
to use recurrent neural networks [15], tree-structured networks based on document structure
[16], convolutional neural networks [1], or structured models [5] to calculate attention.

8.5 Copying and Unknown Word Replacement

One pleasant side-e↵ect of attention is that it not only increases translation accuracy, but
also makes it easier to tell which words are translated into which words in the output. One
obvious consequence of this is that we can draw intuitive graphs such as the one shown in
Figure 25, which aid error analysis.

Another advantage is that it also becomes possible to handle unknown words in a more
elegant way, performing unknown word replacement [7]. The idea of this method is simple,
every time our decoder chooses the unknown word token hunki in the output, we look up the
source word with the highest attention weight at this time step, and output that word instead
of the unknown token hunki. If we do so, at least the user can see which words have been

61



left untranslated, which is better than seeing them disappear altogether or be replaced by a
placeholder.

It is also common to use alignment models such as those in Section 12 to obtain a trans-
lation dictionary, then use this to aid unknown word replacement even further. Specifically,
instead of copying the word as-is into the output, if the chosen source word is f , we output
the word with the highest translation probability Pdict(e | f). This allows words that are
included in the dictionary to be mapped into their most-frequent counterpart in the target
language.

8.6 Intuitive Priors on Attention

Because of the importance of attention in modern NMT systems, there have also been a
number of proposals to improve accuracy of estimating the attention itself through the intro-
duction of intuitively motivated prior probabilities. [3] propose several methods to incorporate
biases into the training of the model to ensure that the attention weights match our belief of
what alignments between languages look like.

These take several forms, and are heavily inspired by the alignment models that will be
explained in Section 12. These models can be briefly summarized as:

Position Bias: If two languages have similar word order, then it is more likely that align-
ments should fall along the diagonal. This is demonstrated strongly in Figure 25. It
is possible to encourage this behavior by adding a prior probability over attention that
makes it easier for things near the diagonal to be aligned.

Markov Condition: In most languages, we can assume that most of the time if two words
in the target are contiguous, the aligned words in the source will also be contiguous. For
example, in Figure 25, this is true for all contiguous pairs of English words except “the,
European” and “Area, was”. To take advantage of this property, it is possible to impose
a prior that discourages large jumps and encourages local steps in attention. A model
that is similar in motivation, but di↵erent in implementation, is the local attention
model [8], which selects which part of the source sentence to focus on using the neural
network itself.

Fertility: We can assume that some words will be translated into a certain number words in
the other langauge. For example, the English word “cats” will be translated into two
words “les chats” in French. Priors on fertility takes advantage of this fact by giving
the model a penalty when particular words are not attended too much, or attended to
too much. In fact one of the major problems with poorly trained neural MT systems is
that they repeat the same word over and over, or drop words, a violation of this fertility
constraint. Because of this, several other methods have been proposed to incorporate
coverage in the model itself [11, 9], or as a constraint during the decoding process [14].

Bilingual Symmetry: Finally, we expect that words that are aligned when performing
translation from F to E should also be aligned when performing translation from E
to F . This can be enforced by training two models in parallel, and enforcing constraints
that the alignment matrices look similar in both directions.

[3] experiment extensively with these approaches, and find that the bilingual symmetry con-
straint is particularly e↵ective among the various methods.
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8.7 Further Reading

This section outlines some further directions for reading more about improvements to atten-
tion:

Hard Attention: As shown in Equation 74, standard attention uses a soft combination of
various contents. There are also methods for hard attention that make a hard binary
decision about whether to focus on a particular context, with motivations ranging from
learning explainable models [6], to processing text incrementally [17, 4].

Supervised Training of Attention: In addition, sometimes we have hand-annotated data
showing us true alignments for a particular language pair. It is possible to train atten-
tional models using this data by defining a loss function that penalizes the model when
it does not predict these alignments correctly [10].

Other Ways of Memorizing Input: Finally, there are other ways of accessing relevant
information other than attention. [13] propose a method using memory networks,
which have a separate set of memory that can be written to or read from as the processing
continues.

8.8 Exercise

In the exercise for this chapter, we will create code to train and generate translations with an
attentional neural MT model.

Writing the program will entail extending your encoder-decoder code to add attention.
You can then generate translations and compare them to others.

• Extend your encoder-decoder code to add attention.

• On the training set, write code to calculate the loss function and perform training.

• On the development set, generate translations using greedy search.

• Evaluate these translations, either manually or automatically.

It is also highly recommended, but not necessary, that you attempt to implement unknown
word replacement.

Potential improvements to the model include implementing any of the improvements to
attention mentioned in Section 8.6 or Section 8.7.
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