9 Neural MT 3: Other Non-RNN Architectures

In this section, we describe another method of generating sentences that does not rely on
RNNs.

9.1 Translation through Generalized Sequence Encoding

Before getting into specific methods for translation with non-RNN-based architectures, we’ll
first go over a more general way of thinking about the generation of output sequences, a
method we’ll call sequence encoding.

First, let us define a sequence encoder as a neural network that takes in a sequence of
vectors X = xy,...,x|x|, and converts it to another sequence of vectors H = hy, ..., hjg. In
most cases, we’ll consider the case where the number of vectors in the input and output are
the same, in other words |X| = |H|.

To tie this together with previously introduced concepts, we can view the RNN-based
encoder for attention introduced in the previous chapter, as demonstrated in Equation 68 to
Equation 70 as an example of a sequence encoder. Specifically, this uses bi-directional RNNs to
convert the input into an output matrix H ) representing the source sentence. Alternatively,
we could also view the uni-directional RNNs used in language models of Equation 46 as
another type of sequence encoder that only uses an encoder in a single direction.

e, e, e, </s>
‘ p,© ‘ p,© ‘ p,© ‘ p,©
(I S
Target Predictor
‘hlm‘ ‘hzm‘ ‘h3(f)‘ ‘hl(e) ‘hz(e) ‘ha(e) ‘h;e)
oo oo
| Source Encoder Target Encoder
bﬁ \T‘ \T‘ ‘x@) ‘x@) ‘x(e) ‘x(e)
i
Source Embedder Target Embedder |
puteEpiete Ly F 1
f f f <s> e e e

1 2 3 1 2 3

Figure 27: A general example of sequence encoding for sequence-to-sequence prediction.

Given this background, we can express just about any type of sequence-to-sequence model
in the general framework shown in Figure 27. Here, we go from discrete symbols F' and E in
the source and target, to embeddings X () and X(© respectively:

X = sre-embed(F), (81)
X = trg-embed((s) : E). (82)

Notably, when encoding E, we pad it by adding a start-of-sentence symbol (s) at the beginning
of the sentence. This is to ensure that words are only fed to the target encoder after they are
predicted (as is obvious by looking at the time steps in the figure).
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We then use a source encoding function to convert the source embeddings X ) to the
encoded vectors H(/)
H = src—encode(X(f)). (83)

Next, we use a target encoder, which takes as input both the source encoded sequence, and
target embeddings to generate encoded vectors for the target:

H® = trg-encode(X ) H), (84)

Finally, we make predictions of the probability using a target predictor (such as a softmax
function), to get the probabilities of the output to calculate loss functions or make predictions

P©) = trg-predict(H®). (85)

Here, when we make predictions we make sure to add the end-of-sentence symbol (/s) to
ensure that we properly predict the end of the sentence, as was also necessary in previous
chapters.

This framework encompasses the previous methods that we described. For example, the at-
tentional sequence-to-sequence models introduced in the previous chapter define src-encode(-)
as a bi-directional RNN, and trg-encode(-) as a uni-directional RNN with attention applied
to reference H() at each time step. But notably it also opens up a wide array of other
possibilities — we can define src-encode(-) and trg-encode(+) to be any function that we wish,
with some conditions. One important condition is that the target predictor must not have
access to words e>; when predicting e;, as that would break down the basic assumption that
we are predicting words one at a time from left-to-right, which is necessary to correctly cal-
culate probabilities or make predictions (remember Equation 4). For example, we could not
(naively) use a bi-directional RNN as trg-encode(-), as this would give the model access to
information about e; (through the backward RNN component) at training time. Because
this information would not be available at test time when the model had to actually make
predictions one-by-one from left to right, this would cause a training/test mismatch and cause
the model to not function properly.

f, f, f, <s>e e, e

HEENE[][]e
HEEEN[ [ e
HEEHEEENE[ .
EEEEENEN <~

Figure 28: An example of masking for sequence-to-sequence prediction. Rows are inputs,
columns are outputs, dark squares indicate used information, and light squares indicate unused
information.

One way to explicitly satisfy this condition is by limiting the class of functions that we can
use in trg-encode(+) to those that do not reference future information (e.g. by only using uni-
directional RNNs, or other similar models that rely solely on past context). There is another
way of doing so that is computationally convenient for some of the models we introduce below:
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Figure 29: Several varieties of CNNs: vanilla, strided, and dilated.

masking. Remember back to Section 6.5, masking is used to cancel out parts of computation
that we would like to have no effect on our final result. In this case, we would like to have
the words e>; not have an effect on the calculation of e;, so when calculating the probability
of e;, we can mask out the values of e>;. A graphical example of this masking procedure can
be found in Figure 28, where this mask can be applied to any layer in the target embedders
or encoders to ensure that information from future words e>; doesn’t leak back when making
the prediction of e;.

Now that we have a general framework for translation using sequence encoders, lets look
at a couple varieties of neural network that we can use for this task.

9.2 Convolutional Neural Networks

Convolutional neural networks (CNNs; [5, 16, 11]), Figure 29(a)) are a variety of neural
net that combines together information from spatially or temporally local segments. They
are most widely applied to image processing but have also been used for speech processing,
as well as the processing of textual sequences. While there are many varieties of CNN-based
models of text (e.g. [9, 12, 8]), here we will show an example from [10]. This model has
n filters with a width w that are passed incrementally over w-word segments of the input.
Specifically, given an embedding matrix M of width |F|, we generate a hidden layer matrix
H of width |F| — w + 1, where each column of the matrix is equal to

h; = Wconcat(my, myt1, ..., Mpyp—1) (86)

where W € R™®I™| ig a matrix where the ith row represents the parameters of filter i that
will be multiplied by the embeddings of w consecutive words. If w = 3, we can interpret
this as h; extracting a vector of features for f, hy as extracting a vector of features for f3,
etc. until the end of the sentence. This resulting matrix H can then be used as a generalized
sequence encoder in the sequence-to-sequence models above.

CNNSs have one major advantage over RNNs: the calculation of each h; is independent of
others. Remembering back to the introduction of RNNs, the value of h; is dependent on the
value of h;_1, which means that it is necessary to calculate the values in sequence, making the
number of consecutive operations linear in the length of the sequence. On the other hand, for
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CNNs h; is not dependent on any other value of h, and thus all values in H can be calculated
simultaneously, in parallel. This is especially good news for highly parallelized computation
hardware such as GPUs, which excel at this kind of parallel computation.

However, one major disadvantage of CNNs is that they can only capture limited context,
up to the filter size. This is obviously a problem in sequence-to-sequence models, where having
a global view of the entirety of content in the sentence is important. As a fix to this problem,
it is common to use strided convolutions, convolutions that skip over positions to reduce
the scale of the input. For example, in Figure 29(b), we can see two layers of CNN, where
each layer has a filter width of 3, and stride of 2, indicating that it calculates filters of width
3, but skips over every other vector in each layer. By stacking together layers of strided
convolutions, it becomes possible to have each vector in the final layer cover an exponentially
increasing number of input vectors, expanding the effective amount of area that each vector
represents.

Strided CNNs have a disadvantage however: unlike regular CNNs they reduce the size
of the output compared to the input, and thus we no longer have a single output vector
for every input vector. This may or may not be a major problem for the source encoder
in Section 9.1, but it is certainly a problem for the target encoder, where we must make
one prediction for each input word and thus need to have a vector for each output position.
To fix this problem we can turn to a technique called dilated convolutions, which are
strided convolutions shifted over each time step in the input [8], as shown in Figure 29(c).
These combine the good features of standard CNNs (one vector per input) and strided CNNs
(wider context window), and have been shown to be quite effective for both language and
sequence-to-sequence modeling [8, 6].

Finally, it should be noted that CNNs are commonly used in sentence classification tasks,
where they have generally allowed for superior performance to RNNs due to their ability to
efficiently detect features of short word sequences in sentence text, which is often sufficient
for high-accuracy classification [10]. To perform classification, we need a single vector that
summarizes all the features in the sentence to feed into the final classifier. To get this vector,
we perform a pooling operation that converts this matrix H (which varies in width according
to the sentence length) into a single vector h (which is fixed-size and can thus be used in down-
stream processing). Examples of pooling operations include:

Max: This takes the element-wise max of all of the vectors in H. Intuitively, this demon-
strates whether a feature appeared anywhere in the sentence, and is the most common
variety of pooling function.

Average: This takes the element-wise average of all the vectors in H, indicating how common
the features is in the sentence.

k-max: This takes the k max elements of the vectors in H, counting up to k& occurances of
any particular feature [9].

Dynamic: Instead of performing an operation over the entire sentence, this instead performs
an operation over k slices of the sentence (e.g. beginning, middle, and end if k£ = 3) [14].
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9.3 Self Attention

Another method for encoding sequences of vectors that has recently been shown to be effective
is intra-attention or self attention [4, 13, 15]. The concept behind this method is extremely
simple: unlike standard attention, where a target vector is used to perform attention over
source vectors, instead all vectors in an input X attend to themselves.

Specifically taking the example of [15], this is done by taking the original matrix X, and
three parameter matrices W, Wi and Wy, and calculating three transformations, the query
matrix, the key matrix, and the value matrix:

Q =WeX, (87)
K =WgX, (88)
vV =WyX. (89)

Then, analogous to the standard attention in Equation 73 the columns in the query matrix
are used to calculate attention over the columns in the key matrix:

a;,j = attn_score(g;, k;). (90)
We then take the softmax to normalize the values to each query vector to sum to one
a; = softmax(a;), (91)

and multiply the attention probabilities with the columns of the value matrix to get our final
encoding for each time step:

hz‘ = Vai. (92)

Compared to convolutions, self attention has several advantages and disadvantages. One
advantage is that self attention is that it is even more efficient than convolution, and can be
implemented almost entirely with highly optimized matrix multiplications. Another advan-
tage is that any word in the sequence can easily reference any word in the input sequence,
not limited by the fixed-size context provided by convolutions.

However, this advantage of being insensitive to context is also a disadvantage: the vanilla
self-attentional model has no concept of whether words are nearby and far away, essentially
making it a bag-of-words model with no concept of word ordering. In order to overcome this
problem, it is common to use positional embeddings [6, 15]. Positional embeddings are
essentially vectors that encode not the identity of the word itself, but rather the word’s position
in the sentence, so the positional embedding will be equivalent for all words e, all words es,
etc. These positional embeddings can then be added to the standard word embedding

T, = x; + pos-embed(t), (93)

giving each word a concept of its position in the sentence. These embeddings can either be
learned directly [6], or calculated using a pre-defined function that depends on the word’s
position [15], with the former allowing for more more flexibility, but the latter having fewer
parameters and having a higher probability of generalizing to positions not seen in the training
data.
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9.4 Multi-head Attention

While attention provides a powerful method to summarize together information from a vari-
able length sequence into a particular fixed-length vector, it is also restrictive — every row of
H is combined together with the same weight specified by a. However, because the function
of attention (or sequence encoders in general), is to combine together various parts of infor-
mation scattered across the input sequence into a vector that is conducive to making final
predictions, it also makes sense that we might want to take different varieties of informa-
tion from different places in the input sequence. For example, let’s take the sentence “If we
are going to play, I'm going to have to buy a new racquet and balls.” When choosing the
translation of a word such as “play”, we definitely will need information about the identity
of the word “play” itself, but also may need information about syntactically-related words
such as the verb’s subject “we”, or topical words indicating the topic of the sentence such
as “racquet” or “balls”. Thus, depending on the type of information we want to capture, we
may need to use different o to capture this information most effectively: sharp, peaky a to
focus on a single word such as “play”, or flat distributed a to focus on many topical words
such as “play”, “racquet”, and “balls”.

Multi-head attention is a method that operationalizes this intuition. The way the
method works is by defining NV attention “heads”, which each are parameterized by differ-
ent parameters (e.g. Wk, Wg,, and Wy, using the example from the previous section).
These different heads are then used to calculate separate encoded vectors, which are finally
concatenated together for use downstream. This concept has been used to calculate different
attention heads to calculate context vectors or copy words in summarization models [1], or
simply to calculate multiple attention heads to capture different features of the input sequence
[15].

9.5 A Case Study: The Transformer Model

The most widely known example of a non-RNN based sequence-to-sequence model is the so-
called “Transformer” model of [15]. This model is notable for both its computational efficiency
and good translation results, and it and its variants are now widely used in translation systems.
While giving a full treatment of this model is beyond the scope of this work, it essentially
falls within the src-encode(+), trg-encode(-) paradigm described earlier in this chapter.

The source encoder of the Transformer works by first adding positional encodings, then
running through multiple layers of:

1. multi-headed self attention with residual connections and layer normalization [2], which
helps normalizes the value of each layer to be zero mean and unit variance.

2. a feed-forward layer with residual connections and layer normalization.

The target encoder is similar, adding positional encodings then running through multiple
layers of:

1. multi-headed self attention over only the target, with residual connections and layer
normalization.

2. multi-headed self attention over the source and target, with residual connections and
layer normalization.
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3. a feed-forward layer with residual connections and layer normalization.

Details of the model can be found in the original paper [15], and its corresponding official
implementation.3°

9.6 Further Reading

There are a number of interesting additional topics regarding non-RNN-based translation
methods.

Efficient Decoding for Self-attention, CNNs: One problem with self-attentional and CNN-
based models is that the speed of decoding decreases significantly as the number of ele-
ments in the output increases, as each output word must be run through several layers
multiple times. To alleviate this problem, [17] propose average attention networks,
which use averaging of the output embeddings over time steps. This makes it possible to
remember which words have been previously generated in a more compact form, making
calculation significantly cheaper.

Non-autoregressive Translation: To further remove the dependence on previously gen-
erated outputs, [7] propose non-autoregressive translation, which generates each of
the output words independently. In order to do so, they need to choose in advance the
word ordering and number of words that each word will generate, reminiscent of the
the classical IBM models covered in Section 12. This allows for fully parallel decoding
over time steps, which is efficient on hardware such as GPUs, but also makes it diffi-
cult to consider interactions between the output words, leading to decreased accuracy
compared to standard auto-regressive models.

Combining Recurrent and Non-recurrent Architectures: While the original research
papers proposing non-RNN architectures tended to eschew RNNs completely, [3] show
that combining RNNs with non-RNN models can result in improved accuracy. In partic-
ular, RNNs were found to be efficient on the decoder side of the model, while non-RNN
models were largely sufficient for the encoder side.

9.7 Exercise

For this chapter, it would be interesting to implement convolution or self-attention as an
additional method for encoding the input in your exisiting translation code. Try to write in
a modular way, perhaps following the example of Section 9.1, which would allow you to try
different architectures.

As a challenge, you can attempt to implement the full transformer model in Section 9.5. Be
aware that this is a challenge: there are many moving parts to this model, and it is notoriously
fragile. After performing your initial implementation, it would be best to reference an existing
implementation (ideally the official one) to make sure that you get comparable accuracy, and
if you don’t you can read their code to figure out where the differences are.

3%https://github.com/tensorflow/tensor2tensor
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