
Figure 56: A phonetic transcription, spectrogram, and waveform for the utterance “will we
ever forget it”. Image credit to Alan Black.

17 Applications 2: Recognition/Generation of Continuous In-
puts

While most of the previous sections have covered applications that take sequences of discrete
inputs and generate sequences of discrete outputs, there are also a large number of works on
modeling continuous inputs or ouputs, such as speech or images.

17.1 Automatic Speech Recognition

17.1.1 Characteristics of Speech and Speech Recognition

Speech is the method by which we communicate a large amount of the time, so assuming we
are familiar with it on the high level. When processing speech by a computer, it is first input
through a microphone as a waveform (bottom of Figure 56) corresponding to the change
in air pressure. It can then be processed into a spectrogram, representing the strength at
various frequency bands (middle of Figure 56) through the application of a Fourier transform.
Segments in the speech correspond to phonemes such as “w” and “iy” corresponding to
component sounds that make up words. Multiple phonemes together compose words, such as
“w” and “iy” becoming “we”.

One classical task that is a sequence-to-sequence modeling problem where the input se-
quence is continuous is speech recognition (often abbreviated ASR for “automatic speech
recognition”). Speech recognition is di�cult because the same word will never be said exactly
the same way; the acoustic signal is filled with noise and/or speaker-specific characteristics
and it is necessary to remove these texts. Speech recognition is generally evaluated using
word error rate, which directly measures the number of insertions, deletions, or substitutions
necessary to turn the output words into the reference text.
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Modern speech recognition approaches can be generally split into two varieties: multi-
component approaches that work by combining together multiple models, and end-to-end
models that try to model speech recognition in a single large and directly-optimized model.

17.1.2 Multi-component Approaches

Approaches to speech recognition that use multiple components have at least two models: the
acoustic model that makes a connection between the incoming acoustic signal, and a language
model that scores the likelihood of the output. Usually there is also a pronunciation dictionary
that maps sequences of phonemes into words, so the language model can be built on the word
level. It is very common to formulate these models using weighted finite-state transducers
(WFSTs), which will be described in Section 13 [10].

Acoustic models are now almost exclusively modeled using deep neural networks that
either take in the acoustic features for a single frame x and predict its phoneme label y [9],
or take in a whole sequence X, encode it with a network (such as bi-directional LSTMs [5]
or Transformers [11, ?]), and predict the probabilities based on this whole sequence worth
of information. One interesting aspect of training acoustic models is that while we may
know the speech signal and also the phonemes contained in the speech signal, we may not
necessarily know the alignment between them, although we know that the speech signal
and the phonemes must be in the same order. A method that can be applied to these
problems connectionist temporal classification (CTC), which automatically induces an
alignment between phonemes and corresponding frames using dynamic programming, and
uses the alignments to train the neural network [4].

17.1.3 End-to-end Approaches

There have also been some promising preliminary results on end-to-end speech recognition
with neural networks.

The most simple of them treats speech recognition as a regular sequence-to-sequence
problem and solves it with encoder-decoder models [3]. In this case the encoder encodes
the speech frames, and the decoder outputs the words or characters of the transcript. One
di�culty is that sequences of frames included in a speech signal tend to be much longer than
the sequences of words included in the corresponding transcript. Both for memory e�ciency
reasons, and to reduce the disconnect between the lengths of inputs and outputs, it is common
to create architectures that reduce the length of the input sequence, including pyramidal RNNs
[3], or strided CNNs [1] and Transformers [15].

There are also methods for speech recognition that directly try to predict words with
CTC-based models [12]. However, in order to perform training e�ciently using dynamic
programming, CTC has to make an assumption of conditional independence of the output,
and because of this it is common to incorporate a language model when actually generating
results, moving these end-to-end models a bit closer to the component-based models above
[21].

17.2 Speech Synthesis

Text-to-speech conversion, or speech synthesis, is the generation of speech from text, and
models to do so generally stich together existing wave forms in a coherent way [6], or generate
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speech using models such as hidden Markov models [20] and deep neural networks [19]. One
method that has recently proven e↵ective in the speech synthesis area uses dialated convolu-
tional neural networks, which use convolutions with gradually increasing spans in the decoder
portion of the network [17].55 There are also methods for voice conversion, which map a
sequence of speech frames to another sequence of speech frames in the voice of another speaker
[16].

Speech synthesis models are often evaluated using mel-frequency cepstral distortion
[8], which is a measure of di↵erence between reference speech and the generated speech. This
is an incomplete measure, however, and manual listening tests are often employed as well.

17.3 Speech Translation

The task of speech translation takes in speech and outputs either text or speech in another
language. Again there are two approaches. The pipeline approach that first performs ASR
to transform speech into text, translates the text from the source to target language, then
optionally synthesizes target-language speech. In contrast, end-to-end speech translation
attempts to go directly from source speech to target text or speech in a single model.

In the case of the pipeline approach, the simplest approach is relatively straightforward:
you simply generate one-best results for each step in the pipeline. However, this can cause
errors to propagate through each time step, leading to reduced accuracy. Thus, it can be useful
to maintain ambiguity throughout the pipeline, for example by outputting n-best hypotheses
or a graph-based structure encoding multiple ASR hypotheses, and feed this in to translation
[13].

Recently, there have been impressive results in end-to-end speech translation, demon-
strating that a model trained to go directly from speech to text in another language can do
relatively similarly to a model using the gold-standard text on the source side, given su�cient
training data [18]. One disadvantage of these methods is that they require a large corpus
of aligned speech in the source language and text in the target language, which can often
be a scarce resource compared to text-to-text translation data. To overcome this problem,
there have been several methods that propose ways to additionally use additional data with
intelligent multi-task learning strategies [2, 14].

17.4 Exercise

A potential exercise for this section would be to find and download a data set for one of these
tasks, and run your sequence-to-sequence model on it and observe the results.
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[12] Haşim Sak, Andrew Senior, Kanishka Rao, and Françoise Beaufays. Fast and accurate recurrent
neural network acoustic models for speech recognition. arXiv preprint arXiv:1507.06947, 2015.

[13] Matthias Sperber, Graham Neubig, Jan Niehues, and Alex Waibel. Neural lattice-to-sequence
models for uncertain inputs. In In Submission to Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (ACL), 2017.

[14] Matthias Sperber, Graham Neubig, Jan Niehues, and Alex Waibel. Attention-passing models
for robust and data-e�cient end-to-end speech translation. In Transactions of the Association of
Computational Linguistics (TACL), 2019.

[15] Matthias Sperber, Jan Niehues, Graham Neubig, Sebastian Stüker, and Alex Waibel. Self-
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