
21 Advanced Topics 3: Sub-word MT

Up until this point, we have treated words as the atomic unit that we are interested in
training on. However, this has the problem of being less robust to low-frequency words,
which is particularly a problem for neural machine translation systems that have to limit their
vocabulary size for e�ciency purposes. In this chapter, we first discuss a few of the phenomena
that cannot be easily tackled by pure word-based approaches but can be handeled if we look
at the word’s characters, and then discuss some methods to handle these phenomena.

21.1 Tokenization

Before we start talking about subword-based models, it is important to consider what a word
is anyway!

In English, a language where words are split by white-space, it may seem obvious: a word
is something that has spaces around it. However, one obvious exception to this is punctuation:
if we have the sentence ”hello, friend”, it would not be advantageous to treat “hello,” (with a
comma at the end) as a separate word from “hello” (without a comma). Thus, it is useful to
perform tokenization before performing translation. For English, tokenization is relatively
simple, and often involves splitting o↵ punctuation, and also doing things like splitting words
like “don’t” into “do n’t.” While there are many di↵erent tokenizers, a popular ones widely
used in MT is the tokenizer included in the Moses toolkit.60.

One extreme example of the necessity for for tokenization is in languages that do not
explicitly mark words with white space delimiting word boundaries. These languages include
Chinese, Japanese, Thai, and several others. In these languages, it is common to create a
word segmenter trained on data manually annotated with word boundaries, then apply this
to the training and testing data for the machine translation system. In these languages, the
accuracy of word segmentation has a large impact on results, with poorly segmented words
often being translated incorrectly, often as unknown words. In particular, [4] note that it is
extremely important to have a consistent word segmentation algorithm that usually segments
words into the same units regardless of context. This is due to the fact that any di↵erences
in segmentation between the MT training data and the incoming test sentence may result in
translation rules or neural net statistics not appropriately covering the mis-segmented word.
As a result, it may be preferable to use a less accurate but more consistent segmentation when
such a trade-o↵ exists.

Another thing to be careful about, whether performing simple tokenization or full word
segmentation, is how to handle tokenization down-stream when either performing evaluation
or actually showing results to human users/evaluators. When showing results to humans,
it is important to perform detokenization, which reverses any tokenization and outputs
naturally segmented text. When evaluating results automatically, for example, using BLEU,
it is important to ensure that the tokenization of the system output matches the tokenization of
the reference, as described in detail by [22]. Some evaluation toolkits, such as SacreBLEU61

or METEOR 62 take this into account automatically: they assume that you will provide
them detokenized (i.e. naturally tokenized) input, and perform their own internal tokenization

60
http://www.statmt.org/moses/

61
https://github.com/mjpost/sacreBLEU

62
https://www.cs.cmu.edu/~alavie/METEOR/
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automatically at evaluation time.

21.2 Sub-word Phenomena

Now that we have discussed words, we can discuss the large number of examples in which
subword structure can be useful for translation systems, a few of which are outlined in Fig-
ure 62.

en: night  fr: nuit
de: Nicht es: noche

fr: traduction

en: translation

cognates loan words
en: Paris
fr:  Paris
es: París

names

transliteration
ja:  �⇥

en: Tokyo

fr:  Paris

ja: ⇤⌅

morphology
es: como  comí    comió

en: I eat    I ate  he/she ate

Figure 62: An example of phenomena for which sub-word information is useful.

For these words, the surface form of the words shows some non-random similarity between
the source and target languages. In the extreme, we can think of examples where the words
are exactly the same between the source and target sentences. For example, this is common
when translating proper names, such as the “Paris” in the top-right of the figure. This can be
handled by copying words directly from the source to target, as described in previous chapters
(Section 20.3, [11])

However, there are many cases where words are similar, but not exactly the same. For
example, this is true for cognates, words which share a common origin but have diverged
at some point in the evolution of respective languages. For example, the word “night” in
English is shared in some form with the words “Nacht” in German, “nuit” in French, and
“noche” in Spanish. These reflect the fact that “night” in English descended from “nakht” in
proto-Germanic (shared with German), which in turn descended from “nekwt” in proto-Indo-
European (shared with all four languages above) [21, 12]. This is also true for loan words,
which are not a result of gradual change in language, but are instead borrowed as-is from
another language. One example of a loan word is “translation” (as well as most other words
that end with “-ion” in English), which was borrowed from its French counterpart. While
these words are not exactly the same, precluding the use of a copy mechanism, models that
can appropriately handle these similarities could improve accuracy for these phenomena.

Another phenomenon that is worth noting is transliteration. Transliteration is the
process of converting words with identical or similar pronunciations from one script to another.
For example, Japanese is written in a di↵erent script than European languages, and thus
words such as “Tokyo” and “Paris”, which are pronounced similarly in both languages, must
nevertheless be converted appropriately.

Finally, morphology is another notable phenomenon that a↵ects, and requires handling
of, subword structure. Morphology is the systematic changing of word forms according to
their grammatical properties such as tense, case, gender, part of speech, and others. In the
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example above, the Spanish verb changes according to the tense (present or past) as well as
the person of the subject (first or third). These sorts of systematic changes are not captured
by word-based models, but can be captured by models that are aware of some sort of subword
structure.

In the following sections, we will see how to design models to handle these phenomena.

21.3 Character-based Translation

The first, and simplest, method for moving beyond words as the atomic unit for translation
is to perform character-based translation, simply using characters to perform translation
between the. In other words, instead of treating words as the symbols in F and E, we simply
treat characters as the symbols in these sequences. Because neural MT methods inherently
capture long-distance context through the use of recurrent neural networks or transformers,
competitive results can actually be achieved without explicit segmentation into phrases [6].
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Figure 63: Encoders that reduce the resolution of input.

There are also a number of methods that attempt to create models that are character-
aware, but nonetheless incorporate the idea that we would like to combine characters into units
that are approximately the same size as a word. A first example is the idea of pyramidal
encoders [3]. The idea behind this method is that we have multiple levels of stacked encoders
where each successive level of encoding uses a coarser granularity. For example, the pyramidal
encoder shown on the left side of Figure 63 takes in every character at its first layer, but each
successive layer only takes the output of the first layer every two time steps, reducing the
resolution of the output by two. A very similar idea in the context of convolutional networks
is dilated convolutions [30], which perform convolutions that skip time steps in the middle,
as shown in the right side of Figure 63.

One other important consideration for character-based models (both neural and symbolic)
is their computational burden. With respect to neural models, one very obvious advantage
from the computational point of view is that using characters limits the size of the output
vocabulary, reducing the computational bottleneck in calculating large softmaxes over a large
vocabulary of words. On the other hand, the length of the source and target sentence will
be significantly longer (multiplied by the average length of a word), which means that the
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number of time steps required for each sentence will increase significantly. This is an even
larger problem when using a mechanism like attention, which has computation time quadratic
in the length of the input. In addition, [19] report that a larger hidden layer size is necessary
to e�ciently capture intra-word dynamics for character-based models, resulting in an increase
in a further increase in computation time.

Notably, these computation times are reduced when using pyramidal encoders or dilated
convolutions, because these methods reduce the number of time steps as they progressively
move through multiple layers. One issue with these models is that the reduced time steps
might not correspond to linguistically meaningful units; for example “happy birthday”, seg-
mented into 4-character chunks would be “happ y bi rthd ay” where none of these chunks are
particularly linguistically meaningful. As a result, there have also been methods that attempt
to jointly learn segmentation in a model similar to the pyramidal encoder, where the model
is able to learn to ignore inputs from the previous layer [5].

21.4 Rethinking Tokenization: Subword Segmentation

Another way to improve translation of lower-frequency words is to come up with a new
standard for tokenizing characters into words that splits words of lower frequency into smaller
units. This is an extremely popular method for handling the problems mentioned above, and
should likely be something you try first when you create MT or sequence-to-sequence models.

In contrast to previous methods for supervised tokenization segmentation where we have
data manually annotated with word boundaries or human-created rules, it is also possible to
perform unsupervised word segmentation, where original corpora (consisting of character
strings) F and E are provided to a training algorithm, and boundaries splitting these into
segmented corpora F̄ and Ē are learned directly from raw text. The most prominent method
for unsupervised word segmentation [10, 20] attempts to maximize the probability of this raw
text using a language model:

logPLM(Ē) =
X

Ē2Ē

|Ē|X

t=1

logP (ēt | ē
t�1
1 ), (213)

s.t.8hE,Ēi2hE,ĒiE = concat(Ē). (214)

These models additionally add a bias against the vocabulary of the model getting too large,
and describe a method to search for this maximum likelihood solution, using either an iterative
procedure that re-samples the segmentations of sentences one-by-one (Gibbs sampling) or
by heuristically prune the vocabulary by removing low-probability words until the vocabulary
reaches a smaller size [15].

As a simple, faster, but potentially less accurate method for unsupervised word segmen-
tation, [24] have recently proposed a method based on a technique called “byte pair encoding
(BPE)”, which is fast and relatively e↵ective. The method finds segmentations by starting
with an initial segmentation E = Ē, where each token is its own character, then iteratively
combining together the most frequent 2-gram in the corpus. The intuition behind the model
is that more frequent strings (with su�cient training data) should be treated as a single unit,
while less frequent strings should be split together into their component parts to prevent
sparsity.
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In unsupervised word segmentation algorithms, it is also common to perform joint sub-
word segmentation, essentially segmenting both sides of the corpus with a single model
at the same time [24]. The reason for this is because many words share character strings,
as noted in Section 21.2. This would basically entail running the same unsupervised word
segmentation, only over both the source and target corpora F and E at the same time, instead
of running them separately. However, this method obviously will not work well for languages
that do not share the same script, and also is sensitive to superficial di↵erences in words
(“revolution” in English and “revolucion” in Spanish) that result in di↵erent segmentations
for very similar words.

Luckily, there are high-quality implementations of these subword segmentation algorithms
that can be used out-of-the-box. One example of this is sentencepiece.63.

21.5 Hybrid Word-character Models

While subword segmentation is convenient, it is also overly simple and can be sub-optimal
for translation of morphologically complex languages, or for multilingual translation [28]. It
is also possible to create models that work on the word level but nonetheless have a concept
of the structure of words.

One example of this is models for transliteration, where the model decides to translate
character-by-character only if it decides that the word should be transliterated. For example,
[13] come up with a model that identifies named entities (e.g. people or places) in the source
text using a standard named entity recognizer, and decides whether and how to transliter-
ate it. This is a di�cult problem because some entities may require a mix of translation
and transliteration; for example “Carnegie Mellon University” is a named entity, but while
“Carnegie” and “Mellon” may be transliterated, “University” will often be translated into
the appropriate target language. [8] adapt this to be integrated in a phrase-based translation
system.

Word-character hybrid models have also been implemented within the neural MT paradigm.
One method, proposed by [17], uses word boundaries to specify the granularity of the encod-
ing, so that each word is encoded by a single vector (c.f. the fixed-length encoding of the
previous section). The encoding of the word can be performed using a bi-directional LSTM
over its characters, with the final states in each direction being concatenated into the word
representation. On the decoding side, an RNN generates word representations one-by-one,
then the over-arching word representation is used to generate the target word one character
at a time.

Another method for representing words e↵ectively is based on character n-grams [23, 29].
The way this model works is that each n-character sequence is given a unique embedding,
and the representation of the word is calculated as the sum of the embeddings. For example,
if we were using n-grams of length 2 and 3, and the word to encode was “dogs”, then the
embedding for dog would be calculated as the sum of the embeddings for “ d”, “do”, “og”,
“gs”, “s ”, “ do”, “dog”, “ogs”, “gs ”, where the underbar represents the beginning and end
of the word. This representation is relatively e�cient to compute, and has proven empirically
e↵ective both in word embedding [29], and sequence-to-sequence tasks [1]. In the context of
multilingual translation, this can be taken a step further, encoding words based on characters

63
https://github.com/google/sentencepiece
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to encourage sharing between them, but then performing language-specific transformations
to account for di↵erences in spelling [28].

Alternatively, it is also possible to use this character-based model only for words that do
not exist in the vocabulary [18]. This is beneficial, as it allows the model to directly generate
words that are in its vocabulary, presumably more frequent and well-learned words, while
falling back to a character-based representation when it is necessary.

21.6 Models of Morphology

As mentioned above, morphology is the phenomenon of word forms being transformed in a
consistent way corresponding to their syntactic function. Because these transformations are
consistent across words, models that can capture these transformations appropriately can
be used to more accurately translate from or to inflected word forms. One common way
to incorporate morphological information into MT is through a three step process of (1)
analysis, which calculates various features of the word to be translated such as the lemma
or morphological tags, (2) translation, which translates this factored representation making
various independence assumptions, and (3) generation, which creates the surface form from
each of these factors [14].

For the analysis and generation steps, the classical way of creating an analyzer is through
manually created rules with expressed as finite-state automata that take in the characters of
the word one at a time and output possible analyses [2]. This allows us to create a concise
list of analysis candidates for words in the dictionary with relatively high precision, and these
methods are still widely used for a number of languages for which good morphological ana-
lyzers exist. However, these methods rely on a linguist capable of making rules, an extensive
dictionary in the language, and lack the ability to disambiguate hypotheses based on context.
As a result, there are also methods based on symbolic [9] or neural [25] approaches to perform
morphological analysis and contextual disambiguation.

Once we have an analysis of one or both sides of the translation pair, we can proceed to do
translation. One easy and e↵ective way to do so when using a morphologically rich language
on the source side is simply to analyze the source corpus, split the words into their lemmas
and morphological tags, and use this split data as input to a normal MT system [16]. This
is very similar to the subword splitting approach in Section 21.4, so it is worth considering
the di↵erences. In the case of concatenative morphology, where a word can be viewed
as the concatenation of its morphemes (e.g. the word “undecided” can be viewed as the
concatenation of “un+decide+d”), subword splitting methods may be su�cient. However,
there are also more di�cult cases such as infix morphology, where the inner parts of a word
are changed due to morphological processes (e.g. in English “goose” and its plural “geese”).
In these more complicated cases, normalizing to the lemma can be an e↵ective way to increase
the generalization capabilities of the translation model.

On the other hand, if we have rich morphology on the target side, we can also think of
converting our target corpus into a sequence of lemmas and morphological tags and translating
into these [27, 7]. Before showing the result to the end user, we need to generate the surface
form from these lemmas and tags (e.g. going from “goose +PLURAL” to “geese”). Similarly,
this process can be done with a rule-based generation model created by a linguist, or through
data-driven approaches, much like morphological analysis. One thing to note is that in general,
translation into morphologically rich languages is considered more di�cult than translation
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from morphologically rich languages to a morphologically poor language such as English.
The reason for this is twofold. First, morphologically rich languages tend to require more
long-distance agreement between the forms of words; similarly to how the subject being first,
second, or third person a↵ects the conjugation of the verb (e.g. “I run” vs. “he runs”),
in morphologically rich languages it is not uncommon for the person, case, gender, or other
information to be matched between di↵erent words in the sentence. Second, by adding an
extra generation step, it is common for error propagation to occur, with errors in the first
step cascading to errors in the second step.

21.7 Further Reading

There are a number of additional topics related to sub-word models that interested readers
can examine:

Factored translation models: Factored translation models split a word up into several
factors and translate them given some independence assumptions on what factors influ-
ence others [14]. For example, a word may be split into a lemma factor, a tense factor,
and a plural factor, each of which would be translated independently, then combined
together in a final generation step. This is di↵erent from the simple pre/post-processing
approaches described above in that these various factors are tightly integrated within
the translation model, and translation is still performed on a word-by-word basis.

Considering multiple segmentations: One problem with selecting segmentations at is
that there may be multiple ambiguous ways to segment a particular word, and it is not
necessarily the case that we can determine which one is best. [15] propose a method to
fix these problems at training time by randomly sampling which segmentation to use
according to a probabilistic model. Further, [26] propose methods to fix this problem
at test time by translating from a lattice of segmentation candidates.

21.8 Exercise

As an exercise, you could try to either

1. Train a character-based neural machine translation system using your existing code.
Note its advantages and disadvantages compared to your existing word-based model,
including training speed and accuracy.

2. Train a system using byte-pair encoding. This would entail implementing the byte pair
encoding algorithm, and using it as a pre-processing step before running your normal
system.
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