CS11-737: Multilingual Natural Language Processing

Graham Neubig, Alan Black, Shinji Watanabe

http://phontron.com/class/multiling2022/

Carnegie Mellon University Language Technologies Institute

http://endangeredlanguages.com/

Language Varieties (e.g. English)

251M Speakers

79M Speakers

60M Speakers 125M Speakers 90M Speakers

How do We Build NLP Systems?

- **Rule-based systems:** Work OK, but require lots of human effort for each language for where they're developed
- not at all in low-data scenarios

• Machine learning based systems: Work really well when lots of data available,

Machine Learning Models

- Formally, map an input X into an output Y. Examples:
 - Input XOutput YTaskTextText in Other LanguageTranslationTextResponseDialogSpeechTranscriptSpeech RecognitionTextLinguistic StructureLanguage Analysis
- To learn, we can use
 - Paired data $\langle X, Y \rangle$, source data X, target data Y
 - Paired/source/target data in similar languages

The Long Tail of Data

Language Rank

How to Cope?

• Better Models or Algorithms:

- sophisticated modeling/training methods know NLP/ML! linguistically informed methods - know linguistics!
- **Better Data:** •

 - every piece of relevant data can help be resourceful! make data if necessary - be connected!
- **Better Deployment:** •
 - different situations require different solutions be aware!

This Class Will Cover

- code switching
- active learning
- syntactic parsing
- Societal Considerations: ethics, connection between language and society

Allow you to build a strong, functioning language system in a low-resource language that you do not know

• Linguistics: typology, orthography, morphology, syntax, language contact/change,

• **Data:** annotated and unannotated sources, data annotation, linguistic databases,

• **Tasks:** language ID, sequence labeling, translation, speech recognition/synthesis,

All to:

Training Multilingual NLP Systems

Data Creation/Curation

- First step is obtaining curated training data in your language
- What **types** of data? (monolingual? multilingual? annotated?)
- Where can we get it? (annotated data sources? curated text collections? scraping?)
- Can we create data? (efficient, high-quality creation strategies)
- How do we deal with the **ethical issues**? (working with communities, language ownership)

Multilingual Training

• Train a large multi-lingual NLP system

• **Challenges:** how to train effectively, how to ensure representation of low-resource languages

Transfer Learning

• Train on one language, transfer to another

• Train on many languages, transfer to another

Train on unannotated data, transfer to supervised tasks

Multilingual Linguistics

Typology: The Space of Languages

- Languages across the world have similarities and differences
- **Typology** is the practice (and result) of organizing languages along axes

Scripts / Writing System

By User:Nickshanks (original)Gts-tg (conversion to svg + small updates) - / Original PNG version by User:Nickshanks CC-BY-SA-3, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=36655731

Phonology

- How is the language pronounced?
- e.g. what is the inventory of vowel sounds?

Morphology, Syntax

Morphology: what is the system of word formation?

English = fusional: *she opened the door for him again* **Japanese** = agglutinative: *kare ni mata doa wo aketeageta* **Mohawk** = polysynthetic: *sahonwanhotónkwahse*

• Syntax: how are words brought together to make sentences?

English = SVO: *he bought a car* **Japanese** = SOV: *kare wa kuruma wo katta* Irish = VSO: cheannaigh sé carr Malagasy = VOS: nividy fiara izy

Language Varieties, Contact, and Change

Languages contact from one-another, and gradually evolve

https://www.sssscomic.com/comic.php?page=196

• Similarity in structure, but also words

Multilingual Applications

Sequence Labeling/Classification

- **Tasks:** language ID, POS tagging, named entity recognition, entity linking
- **Models:** sequence encoders, subword encoding

Data: universal dependencies POS tags, wikipedia-based NER/linking ullet

Morphology, Syntactic Analysis

• Morphological analysis

Much'ananayakapushasqakupuniñataqsunamá

Much'a -na -naya -ka -pu -sha -sqa -ku -puni -ña -taq -suna -má

"So they really always have been kissing each other then"

Much'a	to kiss
-na	expresses obligation, lost in translation
-naya	expresses desire
-ka	diminutive
-pu	reflexive (kiss *eachother*)
-sha	progressive (kiss*ing*)
-sqa	declaring something the speaker has not personally witnesse
-ku	3rd person plural (they kiss)
-puni	definitive (really*)
-ña	always
-taq	statement of contrast (then)
-suna	expressing uncertainty (So)
-má	expressing that the speaker is surprised

(example from Quechua)

• Syntactic analysis

Machine Translation and Sequence-to-sequence Models

• Sequence-to-sequence problems

Seq2seq models with attention

• Transformers

Low-resource considerations

Input X	<u>Output Y</u>	Tas
Text	Text in Other Language	Transla
Text	Response	Dialc
Speech	Transcript	Speech Red
Text	Linguistic Structure	Language /

- Multilingual sharing of structure/vocabulary
- Balancing training over many languages
- Incorporating limited supervision for low-resource languages
- etc. etc.

Modeling Challenges

Shinji: Speech

Logistics

Instructors/TAs

Instructors:

- Alan Black (code-switching, dialogue, speech synthesis)
- Graham Neubig (multilingual NLP, machine translation)
- Shinji Watanabe (speech recognition/synthesis, speech translation)

TAs:

- Xuankai Chang (speech recognition)
- Ting-Rui Chiang (machine translation, dialogue)
- Athiya Deviyani (number processing for speech synthesis)
- Patrick Fernandes (machine translation)
- Vijay Viswanathan (information extraction)

- ~10 minute language in 10: introduce a language, in groups of 2-3.
- ~30 minute, breakout room discussion or code/data/assignment walkthrough
- ~10 minute summary

Class Format:

• ~30 minute **lecture**, with optional reading. There will be discussion questions.

Grading Policy

- Class/Discussion Participation: 15%
- Language in 10 Presentation: 5%
- Assignment 1 (Multilingual Sequence Labeling, individual): 15%
- Assignment 2 (Multilingual Translation, group): 20%
- Assignment 3 (Multilingual Speech Recognition, group): 20%
- Project: 25%

 No discussion for Thursday, but we will look at assignment 1/code walk

Discussion Period for 1/20

Alan: Language in 10!