CMU CS11-737: Multilingual NLP
 Text Classification and Sequence Labeling

Graham Neubig

Carnegie Mellon University
Language Technologies Institute

Text Classification

- Given an input text X, predict an output label y

Topic Classification
I like peaches and pears \(\begin{gathered}food

$$
\begin{array}{c}\text { politics } \\
\text { music }\end{array}
$$

I like peaches and herb\end{gathered}\)| food |
| :---: |
| $\begin{array}{l}\text { politics } \\ \text { music }\end{array}$ |

Language Identification

I like peaches and pears $\begin{gathered}\text { English } \\ \text { Japanese } \\ \text { German }\end{gathered}$

Sentiment Analysis (sentence/document-level)

... and many many more!

Sequence Labeling

- Given an input text X, predict an output label sequence Y of equal length!

Part of Speech Tagging

Lemmatization

He saw two birds $\begin{array}{cccc}\downarrow & \downarrow & \downarrow & \downarrow \\ \text { he } & \text { see } & \text { two } & \text { bird }\end{array}$

Morphological Tagging

... and more!

Span Labeling

- Given an input text X, predict an output spans and labels Y. Named Entity Recognition
Graham Neubig is teaching at Carnegie Mellon University PER ORG

Syntactic Chunking

$\frac{\text { Graham Neubig }}{\text { NP }} \frac{\text { is teaching }}{V P} \frac{\text { at Carnegie Mellon University }}{N P}$

Semantic Role Labeling

Graham Neubig is teaching at Carnegie Mellon University Actor Predicate Location

Span Labeling as Sequence Labeling

- Predict Beginning, In, and Out tags for each word in a span

Graham Neubig is teaching at Carnegie Mellon University PER ORG

Graham Neubig is teaching at Carnegie Mellon University B-PER

I-PER O

\downarrow	$\stackrel{\downarrow}{O}$	B-ORG
	I-ORG	$\stackrel{\downarrow}{\downarrow}$
-ORG		

Text Segmentation

－Given an input text X ，split it into segmented text Y ．

Tokenization

A well－conceived＂thought exercise．＂
A well－conceived＂thought exercise
Word Segmentation
外国人参政権
外国 人 参政 権
外国 人参 政権
foreign people voting rights

foreign carrot government

Morphological Segmentation
Köpekler

Köpek ler dog Number＝Plural

Köpekle r
dog＿paddle Tense＝Aorist
－Rule－based，or span labeling models

Modeling for Sequence Labeling/Classification

How do we Make Predictions?

- Given an input text X
- Extract features H
- Predict labels Y

Sequence Labeling

A Simple Extractor: Bag of Words (BOW)

A Simple Predictor: Linear Transform+Softmax
 $$
\mathrm{p}=\operatorname{softmax}\left(\mathrm{W}^{*} \mathrm{~h}+\mathrm{b}\right)
$$

- Softmax converts arbitrary scores into probabilities

$$
p_{i}=\frac{e^{s_{i}}}{\sum_{j} e^{s_{j}}} \quad \mathrm{~s}=\left(\begin{array}{c}
-3.2 \\
-2.9 \\
1.0 \\
2.2 \\
0.6 \\
\ldots
\end{array}\right) \longrightarrow \mathrm{p}=\left(\begin{array}{c}
0.002 \\
0.003 \\
0.329 \\
0.444 \\
0.090 \\
\ldots
\end{array}\right)
$$

Problem: Language is not a Bag of Words!

I don't love pears

There's nothing I don't love about pears

Better Featurizers

- Bag of n-grams
- Syntax-based features (e.g. subject-object pairs)
- Neural networks
- Recurrent neural networks
- Convolutional networks
- Self attention

What is a Neural Net?: Computation Graphs

"Neural" Nets

Original Motivation: Neurons in the Brain

Current Conception: Computation Graphs

expression:

x

graph:

A node is a \{tensor, matrix, vector, scalar\} value
\square

An edge represents a function argument.

A node with an incoming edge is a function of that edge's tail node.

A node knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial F}{\partial f(u)}$.

expression:

$$
\mathbf{x}^{\top} \mathbf{A}
$$

graph:
Functions can be nullary, unary, binary, ... n-ary. Often they are unary or binary.

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

Computation graphs are generally directed and acyclic
expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}
$$

graph:

expression:

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

expression:

$$
y=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b} \cdot \mathbf{x}+c
$$

graph:

variable names are just labelings of nodes.

Algorithms (1)

- Graph construction
- Forward propagation
- In topological order, compute the value of the node given its inputs

Forward Propagation

graph:

Algorithms (2)

- Back-propagation:
- Process examples in reverse topological order
- Calculate the derivatives of the parameters with respect to the final value (This is usually a "loss function", a value we want to minimize)
- Parameter update:
- Move the parameters in the direction of this derivative W-= a * dl/dW

Back Propagation

graph:

Neural Network Frameworks

mxnet

$\partial y /$ net

PYTORCH

Examples in this class

Basic Process in (Dynamic) Neural Network Frameworks

- Create a model
- For each example
- create a graph that represents the computation you want
- calculate the result of that computation
- if training, perform back propagation and update

Recurrent Neural Networks

Long-distance
 Dependencies in Language

- Agreement in number, gender, etc.

He does not have very much confidence in himself. She does not have very much confidence in herself.

- Selectional preference

The reign has lasted as long as the life of the queen. The rain has lasted as long as the life of the clouds.

Recurrent Neural Networks (Elman 1990)

- Tools to "remember" information

Feed-forward NN
Recurrent NN

Unrolling in Time

- What does featurizing a sequence look like?

Representing Sentences

- Text Classification
- Conditioned Generation
- Retrieval

Representing Words

- Sequence Labeling
- Language Modeling
- Calculating Representations for Parsing, etc.

Training RNNs

RNN Training

- The unrolled graph is a well-formed (DAG) computation graph—we can run backprop

- Parameters are tied across time, derivatives are aggregated across all time steps
- This is historically called "backpropagation through time" (BPTT)

Parameter Tying

Parameters are shared! Derivatives are accumulated.

Bi-RNNs

- A simple extension, run the RNN in both directions

Multilingual Labeling/Classification Data and Models

Language Identification

LTI Language Identification Corpus http://www.cs.cmu.edu/~ralf/langid.html

- Benchmark on 1152 languages from a variety of free sources
langid.py
https://github.com/saffsd/langid.py
- Off-the-shelf language ID system for 90+ languages

Automatic Language Identification in Texts: A Survey https://arxiv.org/pdf/1804.08186.pdf

Text Classification

- Very broad field, many different datasets

MLDoc: A Corpus for Multilingual Document Classification in Eight Languages
https://github.com/facebookresearch/MLDoc

- Topic classification, eight languages

PAWS-X: Paraphrase Adversaries from Word Scrambling, Cross-lingual Version https://github.com/google-research-datasets/paws/tree/master/pawsx

- Paraphrase detection (sentence pair classification)

Cross-lingual Natural Language Inference (XNLI) corpus https://cims.nyu.edu/~sbowman/xnli/

- Textual entailment prediction (sentence pair classification)

Cross-lingual Sentiment Classification
Available from: https://github.com/ccsasuke/adan

- Chinese-English cross-lingual sentiment dataset

Part of Speech/ Morphological Tagging

- Part of universal dependencies treebank https://universaldependencies.org/
- Contains parts of speech and morphologcal features for 90 languages
- Standardized "Universal POS" and "Universal Morphology" tag sets make things consistent
- Several pre-trained models on these datasets:
- Udify: https://github.com/Hyperparticle/udify
- Stanza: https://stanfordnlp.github.io/stanza/

Named Entity Recognition

"Gold Standard"

CoNLL 2002/2003 Language Independent Named Entity Recognition https://www.clips.uantwerpen.be/conll|2002/ner/ https://www.clips.uantwerpen.be/conll2003/ner/

- English, German, Spanish, Dutch human annotated data

"Silver Standard"

WikiAnn Entity Recognition/Linking in 282 Languages
https://www.aclweb.org/anthology/P17-1178/
Available from: https://github.com/google-research/xtreme

- Data automatically extracted from Wikipedia using inter-page links

Composite Benchmarks

- Benchmarks that aggregate many different sequence labeling/classification tasks

XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Generalization https://github.com/google-research/xtreme

- 10 different tasks, 40 different languages

XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training, Understanding and Generation https://microsoft.github.io/XGLUE/

- 11 tasks over 19 languages (including generation)

Discussion Items

Tuesday January 25

- Reading Assignment:

Ponti, E.M., O’horan, H., Berzak, Y., Vulić, I., Reichart, R., Poibeau, T., Shutova, E. and Korhonen, A., 2019. Modeling language variation and universals: A survey on typological linguistics for natural language processing. Computational Linguistics, 45(3), pp.559-601.

- Discussion Question:

What are some unique typological features of a language that you know, regarding phonology, morphology, syntax, semantics, pragmatics?

Today

- Assignment 1 introduction
- Code walk

