CS11-737:

Multilingual Natural Language Processing

Typology: The Space of Languages

Alan W Black

Carnegie Mellon University

Language Technologies Institute

Many slides by Yulia Tsvetkov

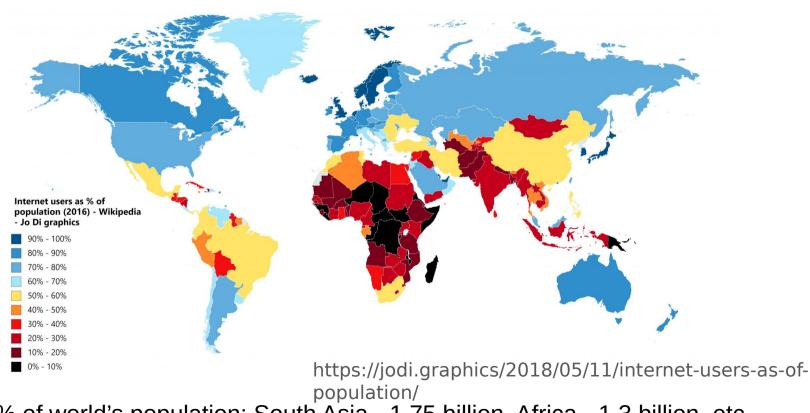
Linguistic diversity: ~7000 languages

Linguistic Diversity

There are about 460 languages in India.

1.38 billion people

Linguistic Diversity


Africa is a continent with a very high linguistic diversity:

there are an estimated 1.5-2K African languages from 6 language families.

1.33 billion people

Low-resource/multilingual NLP

40% of world's population: South Asia - 1.75 billion, Africa - 1.3 billion, etc.

How to define similarity across languages?

- Word overlap and sub-word overlap
 - Russian Русский
 - Ukraininan Українська
 - Chinese 中文
 - Korean
 - Vietnamese Tiếng Việt
 - Georgian ქართული

- Japanese 日本人
- Turkish Türk
- Hebrew
- \circ Arabic
- Hindi
- Xhosa

عربی-हन्दी –

עברית –

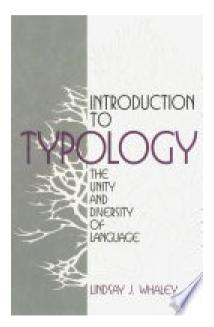
– isiXhosa

• Areal similarity www.glottolog.org

_ 한국어

• Demographic similarity

Genealogical similarity

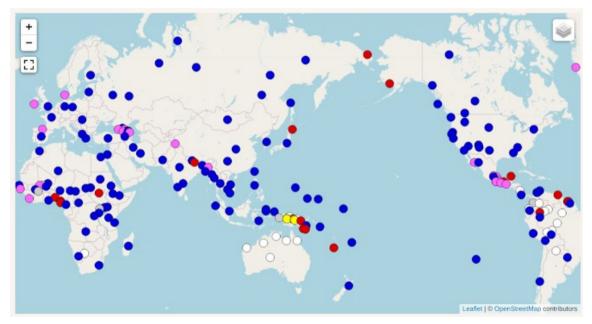

- 1. Niger–Congo (1,542 languages) (21.7%)
- 2. Austronesian (1,257 languages) (17.7%)
- 3. Trans–New Guinea (482 languages) (6.8%)
- 4. Sino-Tibetan (455 languages) (6.4%)
- 5. Indo-European (448 languages) (6.3%)
- 6. Australian [dubious] (381 languages) (5.4%)
- 7. Afro-Asiatic (377 languages) (5.3%)
- 8. Nilo-Saharan [dubious] (206 languages) (2.9%)
- 9. Oto-Manguean (178 languages) (2.5%)
- 10. Austroasiatic (167 languages) (2.3%)
- 11. Tai–Kadai (91 languages) (1.3%)
- 12. Dravidian (86 languages) (1.2%)
- **13**. Tupian (76 languages) (1.1%)

www.ethnologue.com

Typological similarity

- Linguistic typology: classification of languages according to their functional and structural properties
 - explains common properties across languages
 - explains structural diversity across languages

"The classification of languages or components of languages based on shared formal characteristics."



Linguistic typology example: phonology

Place →	ľ.					F	renc	h		Ara	bic					
	Bilabial	Labio-			tal Al	veola	Palato-	Retr	oflex	Alveolo-	Palata	Velar	Uvular	Phary	-	Glotta
↓ Manner		dental	labia	d		-	alveolar			palatal				/ Epig	lottal	
Nasal	m m	ŋ	<u>n</u> l	Ũ	ŗ	n n		ή	η		ĵ (J)°()	Ņ N			
Stop	рb	рþ	ţ	ř	П	d		t	þ		c j	k g	qG	2	(?
Sibilant affricate					t	s dz	tʃ dʒ	tş	dz	tç dz				18		
Non-sibilant affricate	pφbβ	pfþv		tθc	lð ti	Đ dõ	<u>t</u> ı°∙ dı				cç tj	kxgy	<mark>dX </mark> B	₽ħ	? ?	?h
Sibilant fricative					C	5 Z	53	ş	z	6 2						
Non-sibilant fricative	φβ	Øv	Ð	ğθ	ð	ð	، آ+				çj	хy	X	ħ	٢	h
Approximant		υν			-	r i		Ĵ	4		ĵj	ար հ	~	-	-	ļ
Flap or tap	Ý	v		ŗ 🛛	ţ	1		Ĉ	t				Ğ		£	
Trill	В			ŗ.	ţ	:C)	٢ŗ	Ţŗ				R R	н	ç	
Lateral affricate					t	ł dłz		tl⁺	1		c∛ •	kŗgŗ				
Lateral fricative					4	- 3		l.			<u>۲</u> - ۷	ĻĻ				
Lateral approximant				Ĩ)	l	l		ý ý	ĻL	Ļ			
Lateral flap				ĩ		٦			Ĭ		Ś	Ľ				

Linguistic typology example: numerals

Feature 131A: Numeral Bases

Values

•	Decimal	125
•	Hybrid vigesimal-decimal	22
•	Pure vigesimal	20
0	Other base	5
•	Extended body-part system	4
0	Restricted	20

THE WORLD ATLAS OF LANGUAGE STRUCTURES ONLINE

wals.info/chapter/131

• 2,676 languages, 192 attributes

ID#	Feature Name	Category	Feature Values
1	Consonant Inventories	Phonology (19)	{1:Large, 2:Small, 3:Moderately Small, 4:Moderately Large, 5:Average}
23	Locus of Marking in the Clause	Morphology (10)	{1:Head, 2:None, 3:Dependent, 4:Double, 5:Other}
30	Number of Genders	Nominal Categories (28)	{1:Three, 2:None, 3:Two, 4:Four, 5:Five or More}
58	Obligatory Possessive Inflection	Nominal Syntax (7)	{1:Absent, 2:Exists}
66	The Perfect	Verbal Categories (16)	{1:None, 2:Other, 3:From 'finish' or 'already', 4:From Possessive}
81	Order of Subject, Object and Verb	Word Order (17)	{1:SVO, 2:SOV, 3:No Dominant Order, 4:VSO, 5:VOS, 6:OVS, 7:OSV}
121	Comparative Constructions	Simple Clauses (24)	{1:Conjoined, 2:Locational, 3:Particle, 4:Exceed}
125	Purpose Clauses	Complex Sentences (7)	{1:Balanced/deranked, 2:Deranked, 3:Balanced}
138	Tea	Lexicon (10)	{1:Other, 2:Derived from Sinitic 'cha', 3:Derived from Chinese 'te'}
140	Question Particles in Sign Languages	Sign Languages (2)	{1:None, 2:One, 3:More than one}
142	Para-Linguistic Usages of Clicks	Other (2)	{1:Logical meanings, 2:Affective meanings, 3:Other or none}

Example from Georgi, Xia and Lewis (2010)

Dryer, Matthew S. & Haspelmath, Martin (eds.) 2013. The World Atlas of Language Structures Online. *Leipzig: Max Planck Institute for Evolutionary Anthropology.*

Automatic prediction of typological features

- Morphosyntactic annotation projection
 - Sentence and treebank alignments to project feature annotations from similar languages
- Unsupervised and semi-supervised feature propagation
 - Hierarchical typological clustering and majority value assignment
 - Language-family based nearest neighbor projection
 - Matrix completion
- Supervised Learning
 - Logistic regression
 - Determinant point process with neural features
- Cross-lingual distributional feature alignment

Ponti, E.M., O'horan, H., Berzak, Y., Vulić, I., Reichart, R., Poibeau, T., Shutova, E. and Korhonen, A., 2019. Modeling language variation and universals: A survey on typological linguistics for natural language processing. *Computational Linguistics*, 45(3), pp.559-601.

TyP-NLP Workshop at ACL 2019

Typological databases

Name	Levels	Coverage	Feature Example		
World Atlas of Language Structures (WALS)	Phonology, Morphosyntax, Lexical semantics	2,676 languages; 192 attributes; 17% values covered	ORDER OF OBJECT AND VERB Amele: OV (713) Gbaya Kara: VO (705)		
Atlas of Pidgin and Creole Language Structures (APiCS)	Phonology, Morphosyntax	76 languages; 335 attributes	TENSE-ASPECT SYSTEMS Ternate Chabacano: purely aspectual (10) Afrikaans: purely temporal (1)		
URIEL Phonology, Typological Morphosyntax, Compendium Lexical semantic		8,070 languages; 284 attributes; 439,000 values	CASE IS PREFIX Berber (Middle Atlas): yes (38) Hawaaian: no (993)		
Syntactic Structures of the World's Languages (SSWL)	Morphosyntax	262 languages; 148 attributes; 45% values covered	STANDARD NEGATION IS SUFFIX Amharic: yes (21) Laal: no (170)		
AUTOTYP	UTOTYP Morphosyntax		PRESENCE OF CLUSIVITY !Kung (Ju): false Ik (Kuliak): true		
Valency Patterns Leipzig (ValPaL)			TO LAUGH Mandinka: 1 > V Sliammon: V.sbj[1] 1		
yon-Albuquerque Phonology honological Systems Database (LAPSyD)		422 languages; ~70 attributes	d' AND t Sindhi: yes (1) Chuvash: no (421)		
PHOIBLE Online	Phonology	2,155 languages; 2,160 attributes	m Vietnamese: yes (2053) Pirahã: no (102)		
StressTyp2	Phonology	699 languages; 927 attributes	STRESS ON FIRST SYLLABLE Koromfé: yes (183) Cubeo: no (516)		
World Loanword Database (WOLD)	Lexical semantics	41 languages; 24 attributes; ~2,000 values	HORSE Quechua: kaballu borrowed (24) Sakha: silgi no evidence (18)		
ntercontinental Lexical Dictionary Series semantics IDS)		329 languages; 1,310 attributes	WORLD Russian: mir Tocharian A: ārkišoși		
Automated Similarity Judgment Program (ASJP)	Lexical semantics	7,221 languages; 40 attributes	I Ainu Maoka: co7okay Japanese: watashi		

Ponti, E.M., O'horan, H., Berzak, Y., Vulić, I., Reichart, R., Poibeau, T., Shutova, E. and Korhonen, A., 2019. Modeling language variation and universals: A survey on typological linguistics for natural language processing. *Computational Linguistics*, 45(3), pp.559-601.

URIEL

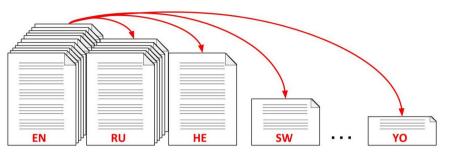
URIEL typological compendium

- Phonology, morphosyntax, lexical semantics
- 8.070 languages, 284 attributes, \$439,000 values
- lang2vec representations from URIEL

https://pypi.org/project/lang2vec/

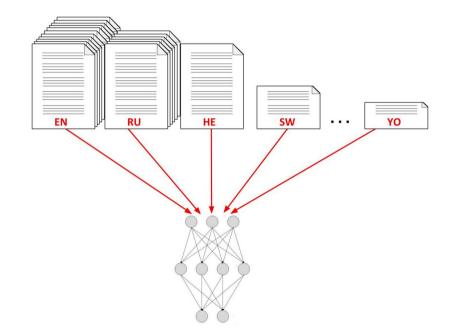
Littel, Patrick, David R. Mortensen, and Lori Levin. 2017. URIEL Typological database. *In* Proc. EACL Malaviya, C., Neubig, G. and Littell, P., 2017. Learning language representations for typology prediction. *In* Proc. EMNLP

Linguistic universals

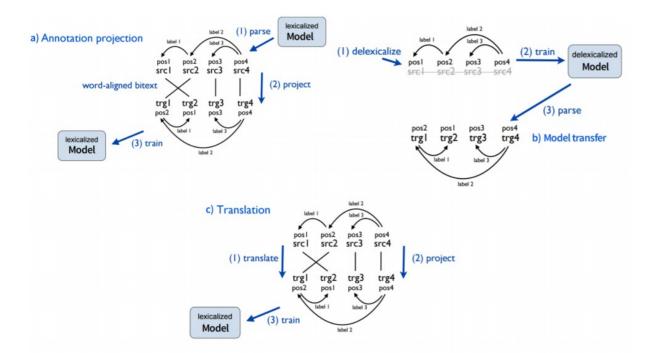

- All languages have vowels and consonants
- All (or at least nearly all) languages of the world also make a distinction between nouns and verbs

Approaches to low-resource/multilingual NLP

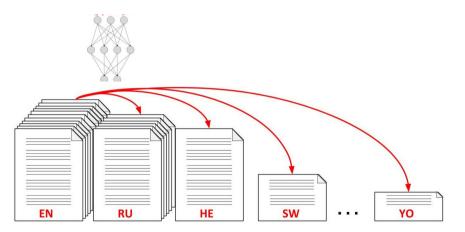
 Manual curation and annotation of large-scale resources for thousands of languages in infeasible or prohibitively expensive

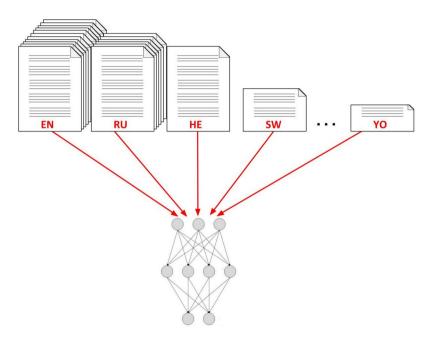

 Unsupervised learning (Snyder and Barzilay 2008; Cohen and Smith, 2009; Snyder, 2010; Vulić, De Smet, and Moens 2011; Spitkovsky et al., 2011; Goldwasser et al., 2011; Titov and Klementiev 2012; Baker et al., 2014, and many others)

Approaches to low-resource/multilingual NLP


- Cross-lingual transfer learning transfer of resources and models from resource-rich source to resource-poor target languages
 - Transfer of annotations (e.g., POS tags, syntactic or semantic features) via cross-lingual bridges (e.g., word or phrase alignments)
 - Transfer of models train a model in a resource-rich language and adapt (e.g. fine-tune) it in a resource-poor language
- Zero-shot learning train a model in one domain and assume it generalizes more or less out-of-the-box in a low-resource domain
- Few shot learning train a model in one domain and use only few examples from a low-resource domain to adapt it

Approaches to low-resource/multilingual NLP


• Joint multilingual learning – train a single model on a mix of datasets in all languages, to enable data and parameter sharing where possible


Linguistic typology in NLP

Ponti, E.M., O'horan, H., Berzak, Y., Vulić, I., Reichart, R., Poibeau, T., Shutova, E. and Korhonen, A., 2019. Modeling language variation and universals: A survey on typological linguistics for natural language processing. *Computational Linguistics*, 45(3), pp.559-601.

Choosing transfer languages

Lin, Y.H. et al. 2019. Choosing Transfer Languages for Cross-Lingual Learning. In Proc. ACL. <u>https://arxiv.org/pdf/1905.12688.pdf</u>

Open research problems

- how to extract typological features automatically from existing multilingual resources such as Universal Dependency treebank, UniMorph, Wikipedia, or Bible corpora
- how to accurately predict typological knowledge while controlling for genealogical and areal biases
- how to incorporate linguistic typology into models
- how to alleviate negative transfer and catastrophic forgetting in multilingually trained models using typological knowledge

Further readings

- Papers in tracks on morphology/phonology or multilinguality at *CL conferences
- Workshops: SIGMORPHON, SIGTYP, ComputEL, AfricaNLP, DeepLo, etc.

Class reading and discussion

- Reading
 - Ponti, E.M., O'horan, H., Berzak, Y., Vulić, I., Reichart, R., Poibeau, T., Shutova, E. and Korhonen, A., 2019. Modeling language variation and universals: A survey on typological linguistics for natural language processing. *Computational Linguistics*, 45(3), pp.559-601.
- Discussion question
- What are some unique typological features of a language that you know regarding phonology, morphology, syntax, semantics, pragmatics?