CS11-737 Multilingual NLP

Multilingual Question Answering

Vijay Viswanathan and Graham Neubig

http://phontron.com/class/multiling2022/

→ Humans have dreamed of asking questions to computers

→ Real examples of question answering systems and tasks you may know

- → Real examples of question answering systems and tasks you may know
 - **♦** LUNAR

- → Real examples of question answering systems and tasks you may know
 - ◆ LUNAR
 - ♦ IBM Watson

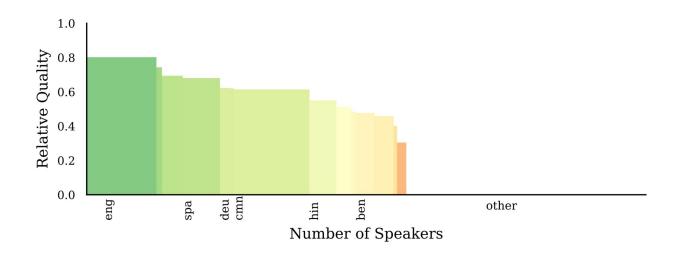
- → Real examples of question answering systems and tasks you may know
 - **♦** LUNAR
 - ♦ IBM Watson
 - ◆ SQuAD

- → Real examples of question answering systems and tasks you may know
 - **♦** LUNAR
 - **♦** IBM Watson
 - ♦ SQuAD
- → All English-language systems and tasks

- → Real examples of question answering systems and tasks you may know
 - **♦** LUNAR
 - ◆ IBM Watson
 - ◆ SQuAD
- → All English-language systems and tasks
- → Raise your hand if you have tried using a digital assistant to answer questions in a language other than English

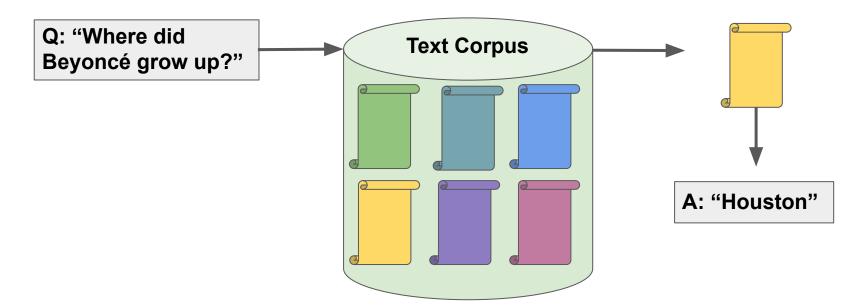
Multilingual Question Answering

→ How to help *all people* access information easily?



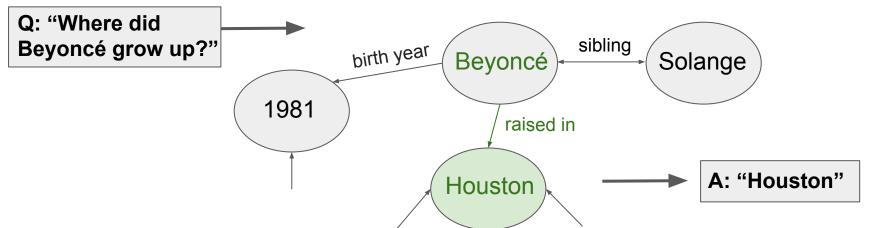
1. Open-Retrieval Question Answering (aka Open Domain Question Answering)

- 1. Open-Retrieval Question Answering (aka Open Domain Question Answering)
 - Given a question, find an answer (if one exists) from a text corpus

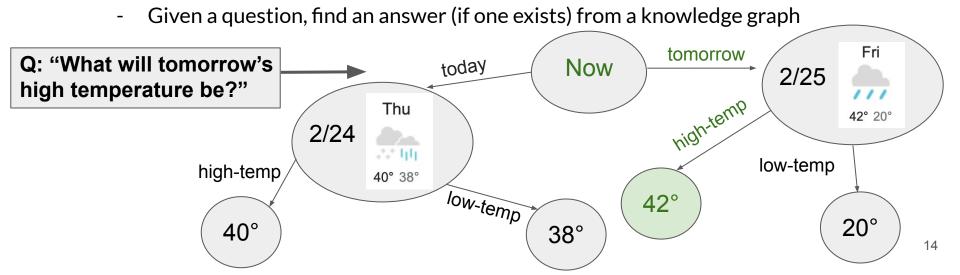


- 1. Open-Retrieval Question Answering (aka Open Domain Question Answering)
 - Given a question, find an answer (if one exists) from a text corpus
- 2. Knowledge Graph Question Answering

- Open-Retrieval Question Answering (aka Open Domain Question Answering)
 - Given a question, find an answer (if one exists) from a text corpus
- 2. Knowledge Graph Question Answering
 - Given a question, find an answer (if one exists) from a knowledge graph



- 1. Open-Retrieval Question Answering (aka Open Domain Question Answering)
 - Given a question, find an answer (if one exists) from a text corpus
- 2. Knowledge Graph Question Answering



Open-Retrieval QA

Open-Retrieval QA

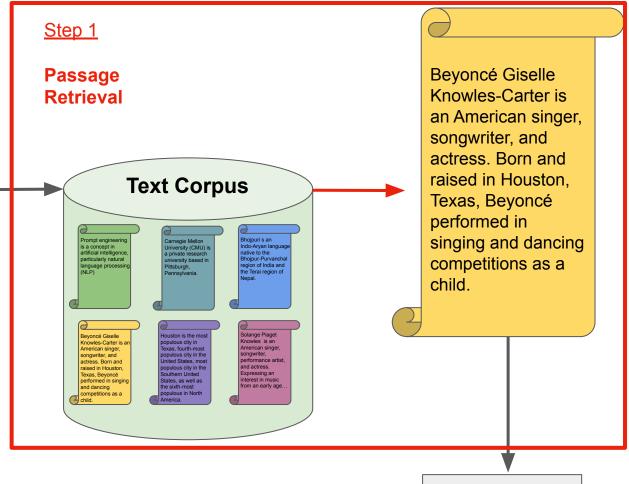
Q: "Where did **Text Corpus** Beyoncé grow up?" Carnegie Mellon Bhojpuri s an Indo-Arvan language is a concept in University (CMU) is artificial intelligence native to the a private research Bhojpur-Purvancha particularly natural university based in language processin region of India and the Terai region of Pennsylvania. Solange Piaget Bevoncé Giselle Knowles is an Knowles-Carter is an opulous city in American singer, Texas, fourth-most American singer, songwriter, opulous city in the actress. Born and United States, most performance artist and actress. populous city in the Southern United raised in Houston. Expressing an Texas, Beyoncé interest in music performed in singing States, as well as from an early age. and dancing the sixth-most competitions as a opulous in North

Beyoncé Giselle Knowles-Carter is an American singer, songwriter, and actress. Born and raised in Houston, Texas, Beyoncé performed in singing and dancing competitions as a child.

11-737: Multilingual QA

Open-Retrieval QA

Q: "Where did Beyoncé grow up?"



Open-Retrieval QA

Q: "Where did **Text Corpus** Beyoncé grow up?" Carnegie Mellon Indo-Arvan language is a concept in University (CMU) is artificial intelligence native to the a private research Bhojpur-Purvancha particularly natural university based in language processin region of India and the Terai region of Solange Piaget Knowles is an Knowles-Carter is an Texas fourth-most American singer, American singer, songwriter, pulous city in the United States, most actress. Born and and actress. populous city in the Southern United raised in Houston. Expressing an Texas, Beyoncé performed in singing States, as well as interest in music from an early age. and dancing the sixth-most competitions as a opulous in North

Beyoncé Giselle **Knowles-Carter** is an American singer, songwriter, and actress. Born and raised in Houston, Texas, Beyoncé performed in singing and dancing competitions as a child.

Step 2

Reading Comprehension

Passage Retrieval

- → Given a query q and a collection of documents $D = \{d_1, ..., d_N\}$, return the most relevant document $d \in D$ for q
 - igoplus Challenge: How to define score(q, d)

Passage Retrieval: tf-idf

- → Classic approach (Spärck Jones 1972)
- → Two ingredients:
 - ◆ Term frequency (TF)
 - how often term appears in a document
 - Inverse document frequency (IDF)
 - how many total documents contain a term
- \rightarrow score $(q,d) = \sum_{t \in q} \frac{t f_{t,d}}{d f_t}$

→ More complex variant of tf-idf (Robertson and Walker 1994)

$$\Rightarrow \operatorname{score}(q, d) = \sum_{t \in q} \log\left(\frac{N}{df_t}\right) \frac{t f_{t,d}}{k\left(1 - b + b\left(\frac{|d|}{|d_{\operatorname{avg}}|}\right)\right) + t f_{t,d}}$$

→ More complex variant of tf-idf (Robertson and Walker 1994)

$$\Rightarrow \operatorname{score}(q, d) = \sum_{t \in q} \log\left(\frac{N}{df_t}\right) \frac{t f_{t,d}}{k\left(1 - b + b\left(\frac{|d|}{|d_{\operatorname{avg}}|}\right)\right) + t f_{t,d}}$$

→ More complex variant of tf-idf (Robertson and Walker 1994)

$$\Rightarrow \operatorname{score}(q, d) = \sum_{t \in q} \log\left(\frac{N}{df_t}\right) \frac{t f_{t,d}}{k\left(1 - b + b\left(\frac{|d|}{|d_{\operatorname{avg}}|}\right)\right) + t f_{t,d}}$$

Document Length Normalization

→ More complex variant of tf-idf (Robertson and Walker 1994)

$$\Rightarrow \operatorname{score}(q, d) = \sum_{t \in q} \log \left(\frac{N}{df_t} \right) \frac{t f_{t,d}}{k \left(1 - b + b \left(\frac{|d|}{|d_{\operatorname{avg}}|} \right) \right) + t f_{t,d}}$$

→ More complex variant of tf-idf (Robertson and Walker 1994)

$$\Rightarrow \operatorname{score}(q, d) = \sum_{t \in q} \log \left(\frac{N}{df_t} \right) \frac{t f_{t,d}}{k \left(1 - b + b \left(\frac{|d|}{|d_{\operatorname{avg}}|} \right) \right) + t f_{t,d}}$$

→ Like tf-idf, requires no supervision

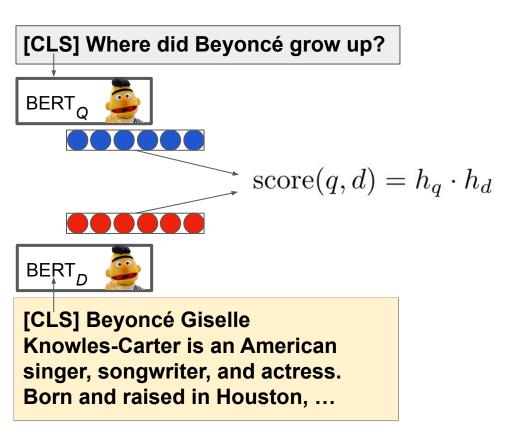
Unsupervised							
BM25	18.4	62.9, 78.3	76.4, 83.2				
ICT	-	50.9, 66.8	57.5, 73.6				
MSS	-	59.8, 74.9	68.2, 79.4				
Contriever	-	67.2, 81.3	74.2, 83.2				
cpt-text S	19.9	65.5, 77.2	75.1, 81.7				
cpt-text M	20.6	68.7, 79.6	78.0, 83.8				
cpt-text L	21.5	73.0, 83.4	80.0, 86.8				
cpt-text XL	22.7	78.8 , 86.8	82.1, 86.9				

	Unsupervised					
	BM25	18.4	62.9, 78.3	76.4, 83.2		
	ICT	-	50.9, 66.8	57.5, 73.6		
	MSS	-	59.8, 74.9	68.2, 79.4		
Cost to encode	Contriever	-	67.2, 81.3	74.2, 83.2		
6M articles: \$17,000	cpt-text S	19.9		75.1, 81.7		
\$126,000 C	cpt-text M	20.6		78.0, 83.8		
	cpt-text L	21.5	1911 : 1911 : 1 - 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1	80.0, 86.8		
	cpt-text X L	22.7	78.8 , 86.8	82.1, 86.9		

- → Use two deep encoders
- \rightarrow $h_q = \operatorname{cls}(\operatorname{BERT}_Q(q))$

$$h_d = \operatorname{cls}(\mathtt{BERT}_D(d))$$

- → Use two deep encoders
- $h_q = \operatorname{cls}(\operatorname{BERT}_Q(q))$ $h_d = \operatorname{cls}(\operatorname{BERT}_D(d))$



Dense Passage Retrieval for Open-Domain Question Answering. Karpukhin et al. 2020. Speech and Language Processing, 3rd edition (draft). Jurafsky and Martin 2021.

- → Use two deep encoders
- $\begin{array}{ll} & h_q = \mathrm{cls}(\mathtt{BERT}_Q(q)) \\ & h_d = \mathrm{cls}(\mathtt{BERT}_D(d)) \end{array} \qquad \mathrm{score}(q,d) = h_q \cdot h_d \\ \end{array}$
- → Index search corpus offline
- → For a new query:
 - Encode the query using BERT
 - ◆ Perform "maximum inner product search" against search corpus

- → Use two deep encoders
- $h_q = \operatorname{cls}(\operatorname{BERT}_Q(q))$ $h_d = \operatorname{cls}(\operatorname{BERT}_D(d))$ $\operatorname{score}(q, d) = h_q \cdot h_d$
- → Trained on a set of questions tagged with known relevant and non-relevant documents
 - Encoders are fine-tuned on this dataset
 - ◆ Large dataset is required, creating a challenge for low-resource languages

"Natural Questions"
Dataset Leaderboard

Rank	Model	Precision@100 ↑	Precision@20	Extra Training Data	Paper
1	DPR-PAQ	89.22	84.68	~	Domain-matched Pre-training Tasks for Dense Retrieval
2	RocketQA	88.5	82.7	×	RocketQA: An Optimized Training Approach to Dense Passage Retrieval for Open- Domain Question Answering
3	DPR+ELECTRA-large-extreader- reranker	88.25	85.26	×	R2-D2: A Modular Baseline for Open- Domain Question Answering
4	DPR+RoBERTa-base-crossencoder- reranker	88.03	84.46	×	R2-D2: A Modular Baseline for Open- Domain Question Answering
5	ANCE	87.5	81.9	×	Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
6	DPR	86	79.4	×	Dense Passage Retrieval for Open-Domain Question Answering
7	BM25+RM3	79.6	64.2	×	Generation-Augmented Retrieval for Open- domain Question Answering

Natural Questions: a Benchmark for Question Answering Research. Kwiatkowski et al. 2019. Dense Passage Retrieval for Open-Domain Question Answering. Karpukhin et al. 2020. Speech and Language Processing, 3rd edition (draft). Jurafsky and Martin 2021.

- \rightarrow Given a question q and a passage p, return an answer s
 - (or determine that no answer exists in the passage)

Q: "Where did Beyoncé grow up?"

Beyoncé Giselle Knowles-Carter is an American singer, songwriter, and actress. Born and raised in Houston, Texas, Beyoncé performed in singing and dancing competitions as a child.

- \rightarrow Given a question q and a passage p, return an answer s
 - (or determine that no answer exists in the passage)

Q: "Who is Beyoncé's sister?"

Beyoncé Giselle Knowles-Carter is an American singer, songwriter, and actress. Born and raised in Houston, Texas, Beyoncé performed in singing and dancing competitions as a child.

No answer

- → Two kinds of reading comprehension:
 - a. Extractive QA: answer is assumed to be a span in the passage p

Q: "Where did Beyoncé grow up?"

Beyoncé Giselle
Knowles-Carter is an
American singer, songwriter,
and actress. Born and
raised in Houston, Texas,
Beyoncé performed in
singing and dancing
competitions as a child.

- → Two kinds of reading comprehension:
 - a. Extractive QA: answer is assumed to be a span in the passage p
 - Generative QA: answer is freely generated,
 given the passage p

Q: "Is Beyoncé from the Southern United States?"

Beyoncé Giselle Knowles-Carter is an American singer, songwriter, and actress. Born and raised in Houston, Texas, Beyoncé performed in singing and dancing competitions as a child.

A: "Yes"

Reading Comprehension: Extractive Baseline

- → Concatenate the question and passage
- → Encode each token in the passage
- → Predict P(start) and P(end) at each token (locally normalized)

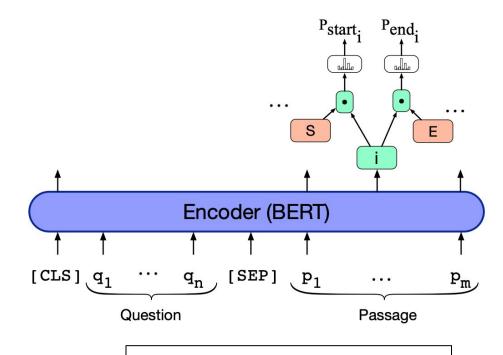
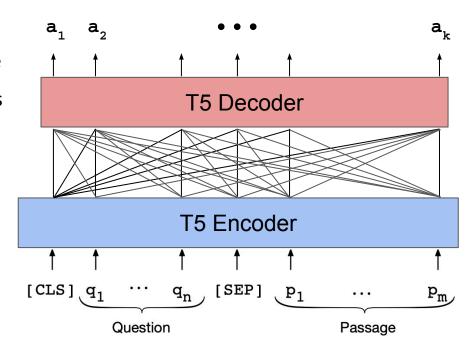


Diagram from Jurafsky and Martin, 3rd ed.

Reading Comprehension: Generative Baseline

- Concatenate the question and passage
- → Using a pretrained sequence-to-sequence model, generate an answer that maximizes P(answer | [question, passage])



→ Most Open-Retrieval QA datasets are in English

Data Type	Language
Questions	English
Answers	English
Text Corpus	English

Benchmarks

These leaderboards are used to track progress in Question Answering

Trend	Dataset	Best Model		
207 288 289 288 282	SQuAD1.1	₹ {ANNA} (single model)		
2(1 260 200 200 200	SQuAD1.1 dev	Ţ T5-11B		
N	SQuAD2.0	▼ IE-Net (ensemble)		
a a a a a a a a	HotpotQA	🟆 BigBird-etc		
n an air air air air	WikiQA	🏆 TANDA-RoBERTa (ASNQ, WikiQA)		
2 200 200 200 200 201	Quora Question Pairs	XLNet (single model)		
a and and and and	CNN / Daily Mail	₹ GA+MAGE (32)		
20. 20. 20. 20. 20. 20.	TriviaQA	₹ SpanBERT		
201 201 201 201	SQuAD2.0 dev	🟆 XLNet (single model)		
20, 20, 20, 20, 20	bAbi	₹ STM		
20 20 20 20	Natural Questions (short)	BERTwwm + SQuAD 2		

→ Most Open-Retrieval QA datasets are in English

Data Type	Language
Questions	English
Answers	English
Text Corpus	English

- → Can we support *questions* in another language
- → Can we search against a *corpus* in another language?

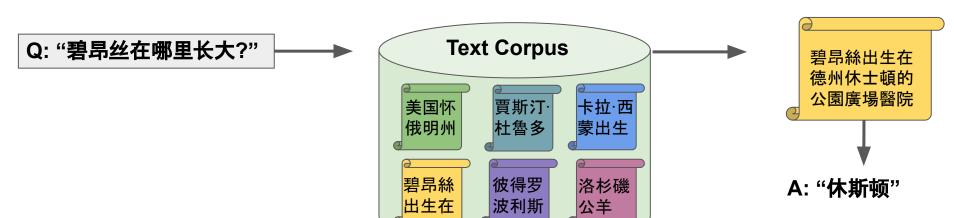
- → Two related problem settings in Open-Retrieval QA:
 - 1) Multilingual QA
 - 2) Crosslingual QA

- → Two related problem settings:
 - 1) Multilingual QA

Data Type	Language
Questions	Language X
Answers	Language X
Text Corpus	Language X

- → Two related problem settings:
 - 1) Multilingual QA

Data Type	Language
Questions	Chinese
Answers	Chinese
Text Corpus	Chinese

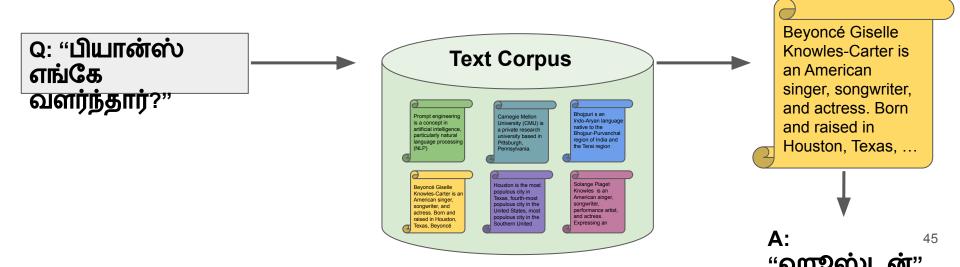


- → Two related problem settings:
 - 1) Multilingual QA
 - 2) Crosslingual QA

Data Type	Language
Questions	Language X
Answers	Language Y
Text Corpus	Language Z

- → Two related problem settings:
 - 1) Multilingual QA
 - 2) Crosslingual QA

Data Type	Language
Questions	Tamil
Answers	Tamil
Text Corpus	English



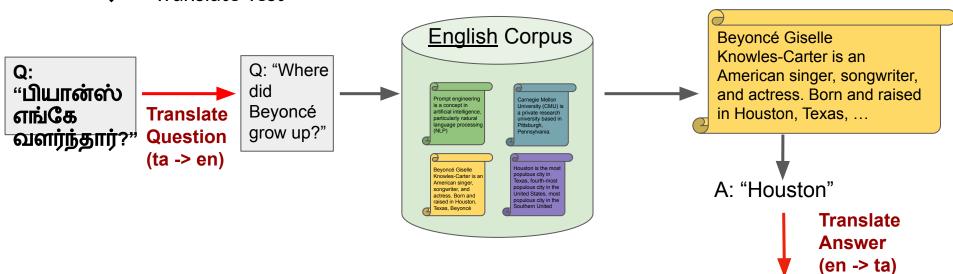
- → Approach 1: Zero-Shot Transfer
 - ◆ Choose a multilingual encoder (e.g. XLM-R)
 - ◆ Finetune it on an English-language QA dataset (e.g. SQuAD)
 - ◆ Transfer the encoder to a new language (e.g. Tamil)

- → Approach 1: Zero-Shot Transfer
 - Choose a multilingual encoder (e.g. XLM-R)
 - ◆ Finetune it on an English-language QA dataset (e.g. SQuAD)
 - ◆ Transfer the encoder to a new language (e.g. Tamil)
- → **Problem:** zero-shot transfer usually doesn't work great
 - ◆ Just giving a few target-language examples helps a lot

Task	Model	k = 0	score	Δ	score	Δ	score	Δ	score	Δ	score	Δ
			k =	= 2	k =	= 4	k =	- 6	k =	- 8	k =	10
XQUAD	мВЕRТ XLM-R	45.62 53.68			48.66 53.84				49.91 55.56			4.57 2.10

- → Approach 2: Translation-Based Adaptation
 - "Translate-Test"
 - Translate question to English
 - Apply an off-the-shelf English QA system against an English text corpus
 - Translate the answer into the language of your choice
 - Discussed in the Ruder reading

- → Approach 2: **Translation-Based Adaptation**
 - "Translate-Test"



Bootstrap Pattern Learning for Open-Domain CLQA. Shima and Mitamura 2010. Multi-domain Multilingual Question Answering [blog post]. Sebastian Ruder 2021.

A: 49 "സെഉപ്പ ഷ്"

- → Approach 2: **Translation-Based Adaptation**
 - "Translate-Test"

ansiale-lest	
Suffers from error propagation from MT system	ns + QA system

- Answers must be found in an English corpus
 - Leads to anglocentric QA systems

Data Type	Language
Questions	Tamil
Answers	Tamil
Text Corpus	English

- → Approach 2: **Translation-Based Adaptation**
 - ◆ "Translate-Train"

Data Type	Language
Questions	Tamil
Answers	Tamil
Text Corpus	English

- Translate full training data (questions, answers, and text corpus/passages) to target language
- Train model in target language

- → Approach 2: **Translation-Based Adaptation**
 - ◆ "Translate-Train"

Data Type	Language
Questions	Tamil
Answers	Tamil
Text Corpus	English

- Translate full training data (questions, answers, and text corpus/passages) to target language
- Train model in target language
- At test time, run open-retrieval QA system on translated text corpus

- → Approach 2: **Translation-Based Adaptation**
 - ◆ "Translate-Train"
 - Requires translating full text corpus (e.g. English Wikipedia)
 - Text corpus (and training data) are noisy due to MT errors

Data Type	Language
Questions	Tamil
Answers	Tamil
Text Corpus	English

- → Approach 3: multilingual retriever-generator (Asai et al. 2021)
 - Method for cross-lingual QA without doing any translation
 - Search for answers from corpora from multiple languages

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

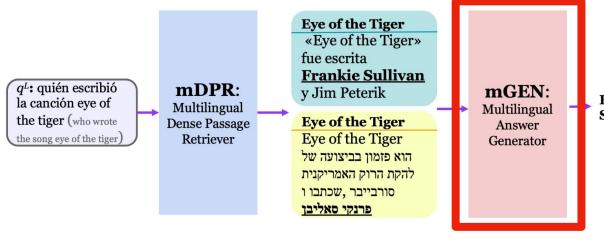
→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

Leverage "multilingual DPR" to retrieve passages of any language from queries of any language

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

Retrieve relevant passages from multiple languages' text corpora

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)



Use multilingual answer generator ("mT5") to generate target-language answer from several multilingual passages.

Frankie Sullivan

One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval. Asai et al. 2021. mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer. Xue et al. 2021.

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)



◆ Challenge: lack of training data for mDPR and mGEN modules

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

- ◆ Challenge: lack of training data for mDPR and mGEN modules
 - Solution: iterative self-training

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

Models			Target I	M	Macro Average					
	Ar	Bn	Fi	Ja	Ko	Ru	Te	F1	EM	BLEU
CORA	59.8	40.4	42.2	44.5	27.1	45.9	44.7	43.5	33.5	31.1
SER	32.0	23.1	23.6	14.4	13.6	11.8	22.0	20.1	13.5	20.1
GMT+GS	31.5	19.0	18.3	8.8	20.1	19.8	13.6	18.7	12.1	16.8
MT+Mono	25.1	12.7	20.4	12.9	10.5	15.7	0.8	14.0	10.5	11.4
MT+DPR	7.6	5.9	16.2	9.0	5.3	5.5	0.8	7.2	3.3	6.3
BM25	31.1	21.9	21.4	12.4	12.1	17.7	_	_	_	_

→ Aside: some QA metrics

F1 EM BLEU

- F1: treat generated and ground-truth answers as bags of tokens
 - Compute precision and recall of token matches

→ Aside: some QA metrics

Generated: "Cavalier King Charles Spaniel"

Actual: "King Charles"

F1 EM BLEU

- F1: treat generated and ground-truth answers as bags of tokens
 - Compute precision and recall of token matches

→ Aside: some QA metrics

Generated: "Cavalier King Charles Spaniel"

Actual: "King Charles"

Exact Match? False

- F1: treat generated and ground-truth answers as bags of tokens
 - Compute precision and recall of token matches
- EM: how often does generated answer exactly match ground-truth answer?

BLEU

 $\mathbf{F}1$

 \mathbf{EM}

→ Aside: some QA metrics

Generated: "Cavalier King Charles Spaniel"

Actual: "King Charles"

- F1: treat generated and ground-truth answers as bags of tokens
 - Compute precision and recall of token matches
- EM: how often does generated answer *exactly match* ground-truth answer?
- BLEU: n-gram overlap

BLEU

 $\mathbf{F}\mathbf{1}$

 \mathbf{EM}

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

Models			Target I	M	Macro Average					
	Ar	Bn	Fi	Ja	Ko	Ru	Te	F1	EM	BLEU
CORA	59.8	40.4	42.2	44.5	27.1	45.9	44.7	43.5	33.5	31.1
SER	32.0	23.1	23.6	14.4	13.6	11.8	22.0	20.1	13.5	20.1
GMT+GS	31.5	19.0	18.3	8.8	20.1	19.8	13.6	18.7	12.1	16.8
MT+Mono	25.1	12.7	20.4	12.9	10.5	15.7	0.8	14.0	10.5	11.4
MT+DPR	7.6	5.9	16.2	9.0	5.3	5.5	0.8	7.2	3.3	6.3
BM25	31.1	21.9	21.4	12.4	12.1	17.7	_	_	_	_

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

	Models	r	Target Language L_i F1							Macro Average			
		Ar	Bn	Fi	Ja	Ko	Ru	Te	F 1	EM	BLEU		
their model	CORA	59.8	40.4	42.2	44.5	27.1	45.9	44.7	43.5	33.5	31.1		
	SER	32.0	23.1	23.6	14.4	13.6	11.8	22.0	20.1	13.5	20.1		
	GMT+GS	31.5	19.0	18.3	8.8	20.1	19.8	13.6	18.7	12.1	16.8		
	MT+Mono	25.1	12.7	20.4	12.9	10.5	15.7	0.8	14.0	10.5	11.4		
	MT+DPR	7.6	5.9	16.2	9.0	5.3	5.5	0.8	7.2	3.3	6.3		
	BM25	31.1	21.9	21.4	12.4	12.1	17.7	_	_	_	_		

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

•	Models	Target Language L_i F1								Macro Average			
		Ar	Bn	Fi	Ja	Ko	Ru	Te	F1	EM	BLEU		
their model	CORA	59.8	40.4	42.2	44.5	27.1	45.9	44.7	43.5	33.5	31.1		
	SER	32.0	23.1	23.6	14.4	13.6	11.8	22.0	20.1	13.5	20.1		
	GMT+GS	31.5	19.0	18.3	8.8	20.1	19.8	13.6	18.7	12.1	16.8		
	MT+Mono	25.1	12.7	20.4	12.9	10.5	15.7	0.8	14.0	10.5	11.4		
"Translate-Test"	MT+DPR	7.6	5.9	16.2	9.0	5.3	5.5	0.8	7.2	3.3	6.3		
	BM25	31.1	21.9	21.4	12.4	12.1	17.7	_	_	_	_		

→ Approach 3: multilingual retriever-generator (Asai et al. 2021)

·	Models	Target Language L_i F1								Macro Average		
		Ar	Bn	Fi	Ja	Ko	Ru	Te	F 1	EM	BLEU	
their model	CORA	59.8	40.4	42.2	44.5	27.1	45.9	44.7	43.5	33.5	31.1	

Note: the F1 and EM scores for the English Natural Questions dataset are 79.6 and 71.9

Multilingual QA Datasets

→ Machine Reading Comprehension

Multilingual QA Datasets

- → Multilingual Machine Reading Comprehension
 - ◆ XQuAD (Artetxe et al. 2020)
 - Based on 1.1K SQuAD question-answer-passage triples
 - Each professionally translated into 10 languages
 - ◆ MLQA (Lewis et al. 2020)
 - ~5K samples in each of 6 languages + English

Multilingual QA Datasets

- → Multilingual Open-Retrieval QA
 - ◆ MKQA (Longpre et al. 2020)
 - 10K QA pairs from Natural Questions (Kwiatkowski et al. 2020) are translated into 26 languages
 - Assumes answer can be found from English Wikipedia

Multilingual QA Datasets

- → Multilingual Open-Retrieval QA
 - ◆ MKQA (Longpre et al. 2020)
 - 10K QA pairs from Natural Questions (Kwiatkowski et al. 2020) are translated into 26 languages
 - Assumes answer can be found from English Wikipedia
 - ◆ TyDi QA (Clark et al. 2020)
 - 200K QA pairs are collected naturally in 11 languages
 - Text corpus is each language's native Wikipedia

Translationese

- → Every dataset until TyDi QA translated English QA pairs into a target language
- → Problems:

Translationese

- → Every dataset until TyDi QA translated English QA pairs into a target language
- → Problems:
 - 1) Translated questions may not be natural
 - Translations into free word-order languages are more likely to adopt English word order

Translationese

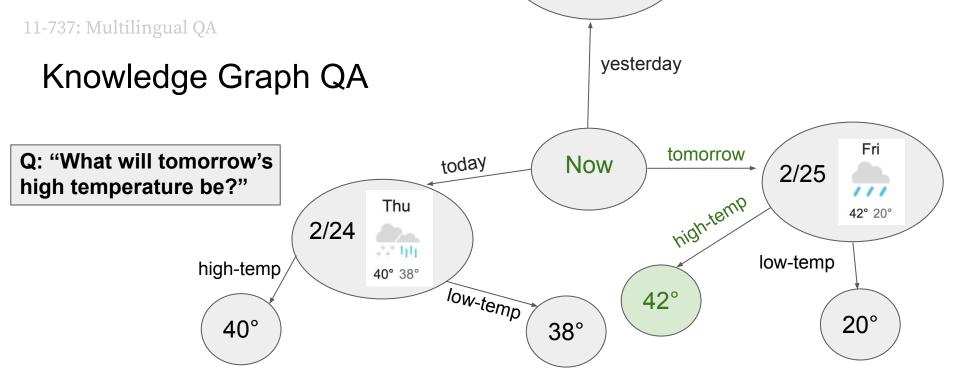
- → Every dataset until TyDi QA translated English QA pairs into a target language
- → Problems:
 - 1) Translated questions may not be natural
 - Translations into free word-order languages are more likely to adopt English word order
 - 2) Answers are assumed to be Anglocentric
 - e.g. The question "Which Indian lawyer advocated the preservation of Marina Beach in Chennai?" cannot be answered from English Wikipedia
 - ் Answer: V. Krishnaswamy lyer (கிருஷ்ணசுவாமி ஐயர்)

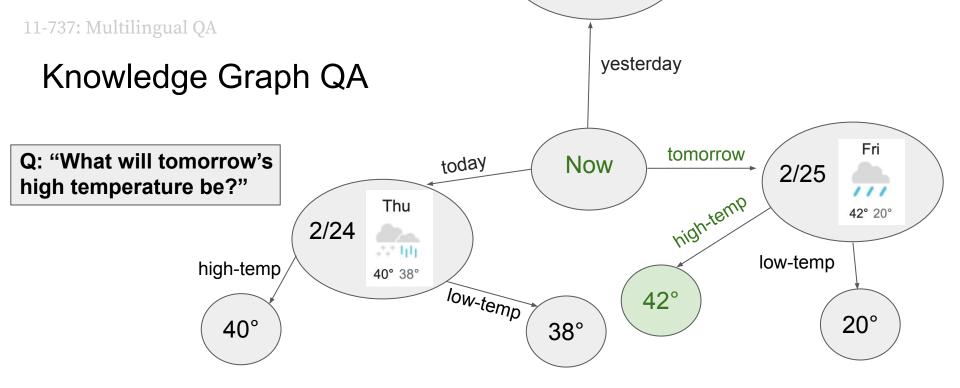
Multilingual QA Datasets

- → Crosslingual Open-Retrieval QA
 - ◆ XOR-QA (Asai et al. 2020)
 - Simply TyDi QA with an added feature
 - If the question has no answer in the original language, a translated answer in English wikipedia is provided

Multilingual QA Datasets

→ XQuAD, MLQA, and TyDi-QA are all included in XTREME multilingual modeling benchmark (Hu et al 2020)





- → Goal: convert question into a query on a structured knowledge graph
 - Semantic parsing

Knowledge Graph QA Methods

- → Little work has been done in this space
- → Known methods:
 - 1) Zero-Shot Transfer
 - Translation-Based Adaptation (e.g. "Translate-Train")
 - Used in the paper given in the reading

Knowledge Graph QA Methods

- → Little work has been done in this space
- → Known methods:
 - 1) Zero-Shot Transfer
 - Translation-Based Adaptation (e.g. "Translate-Train")
 - Used in the paper given in the reading (Zhou et al 2021)
 - In the paper, they leverage word-level translation ("unsupervised bilingual lexicon induction" instead of true MT
 - Motivation: KGQA mainly is concerned with phrase-level semantics

Knowledge Graph QA Datasets

- → Dataset for Multilingual KGQA
 - ◆ RuBQ 2.0 (Rybin et al. 2021)
 - 2910 questions in Russian to be answered using Wikidata (multilingual)
 - ◆ CWQ (Cui et al. 2021)
 - 10K questions in English, Hebrew, Kannada and Chinese
 - Each accompanied with a SPARQL query, which gives the correct answer when run on Wikidata

Knowledge Graph QA Datasets

- → Dataset for Multilingual KGQA
 - ◆ QALD-9-plus (Perevalov et al 2022)
 - Released in Feb. 2022
 - 558 QA pairs to be answered using DBPedia (multilingual KG)
 - Questions in 8 languages:
 - German, Russian, French, Armenian, Belarusian, Lithuanian, Bashkir,
 and Ukrainian

Open Problems in Multilingual QA

- → Multilingual KGQA
 - New-ish research area
- → Crosslingual QA
 - ♦ Plenty of room for improvement
- → Multimodal Multilingual QA
 - ♦ How to leverage non-linguistic cues?
- → Code-Switching in QA
 - Answering code-mixed questions

Discussion Question

- → Read either:
 - One Question Answering Model for Many Languages with Cross-lingual Dense
 Passage Retrieval (<u>Asai et al 2021</u>)
 - Improving Zero-Shot Cross-lingual Transfer for Multilingual Question Answering over Knowledge Graph (<u>Zhou et al 2021</u>)
 - Multi-domain Multilingual Question Answering (<u>Ruder 2021 [blog post]</u>)

Discussion Question

- → Think about a practical question-answering application for a language or domain of interest to you, with an eye towards low-resource or crosslingual QA.
 - ◆ What population would use this application in that language/domain, if any?
 - Do you think the methods in this paper would work for your language/domain?
 - What other resources or strategies might you consider to solve and evaluate this task? (optional)