11-737 Multilingual NLP

Speech

Carnegie Mellon University Language Technologies Institute

Table of Contents

- What is speech?
- Speech applications
- Speech databases
- Speech hierarchy

What is speech???

Watanabe's definition

- Sound produced by human for the communication
- Is this speech?

• Freesound https://freesound.org/

Sound

- Air pressure
- Captured by a microphone

Governed by well known physical properties

 Attenuation, refraction, reflection, diffraction, superposition

Speech waveform?

- Waveform: Converting a sound pressure into a time series
- Usually *1-dimensional waveform* (mono) in this lecture
 - A lot of recording devices support stereo waveforms.
 - Then, it would be 2 (left and right) dimensional waveform
 - We also use a microphone array to capture Ndimensional waveform where N means the number of channels captured by N microphones (e.g., Alexa has 7 microphones, N=7)

What kind of information does speech sound contain?

- Transcription
- Speaker identity
- ...

7

Table of Contents

- What is speech?
- Speech applications
- Speech databases
- Speech hierarchy

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Speech...
- Spoken...

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Any others?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

What is the **most widely** used technique among them?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

What is the **most widely** used technique among them?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Our infrastructure

Our infrastructure

Compress the data while keep the speech information Statistical method based on linear prediction

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Automatic Speech Recognition (ASR)

Widely used in many applications!

We will discuss it in more details in the next lecture

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Inverse problem of ASR

We will discuss it week after the next week

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Speech Translation source speech to target text

Combining ASR + machine translation ©Complicated systems, Error Propagation End-to-End modeling has been actively studied

Speech Translation source speech to target speech

ASR + machine translation + TTS End-to-end? One of the goals of multilingual NLP

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Privacy in speech

- Speech contains various profiling information
- Current speech processing techniques require massive computations
 - Most computations at a server
 - Serious privacy issues
 - On device Al

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

• Denoising (people mainly call it speech enhancement)

• Dereverberation

• Denoising (people mainly call it speech enhancement)

 Dereverber ation

Deep clustering based speech separation [Hershey et al., 2016]

How many microphones do we have?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Microphone array processing Single to multiple microphones

• Denoising (people mainly call it speech enhancement)

Microphone array processing Single to multiple microphones

• Denoising (people mainly call it speech enhancement)

Microphone array processing Single to multiple microphones

Denoising (people mainly call it speech enhancement)

Make a spatial **beam** (beamforming) to only pick up desired signals

Microphone array processing Single to multiple microphones

• Denoising (people mainly call it speech enhancement)

Cocktail party

- Many systems have more than one mic.
 - Alexa 7
 - Human 2
 - More microphones, easier to listen
- Cocktail party
 - Human can easily understand
 - One of the most difficult problem for a machine
- One of the important speech research goal is to realize "who is speaking when what where how"

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

My long-term research topic Conversational AI

Spoken dialog systems

Speech + Language!

One of the ultimate speech research goals

• Human-level spoken dialog systems

What kind of research topics in speech research?

- Speech recognition
- Speech synthesis
- Voice conversion
- Speaker recognition
- Language recognition
- Speech emotion recognition
- Speaker diarization
- Speech coding
- Speech perception

- Speech enhancement
- Microphone array processing
- Audio event classification and detection
- Speech separation
- Spoken language understanding
- Spoken dialogue systems
- Speech translation
- Multimodal processing
- Speech corpus

Table of Contents

- What is speech?
- Speech applications
- Speech databases
- Speech hierarchy

Speech variations Speaking styles and environments

	Style	Hours	Environment	Transcriber	
Wall Street Journal (WSJ)	Read speech	~80	Clean/Close talk	Just confirm	
Switchboard	Spontaneous	~300	Clean/Close talk	Have to transcribe	
Librispeech	Read speech	~1,000	Clean/Close talk	Just confirm	
CHiME-3	Read Speech	~20	Noisy/Distant talk	Just confirm	
CHiME-6	Spontaneous	~50	Noisy/Distant talk	Have to transcribe	

- Read speech: we prepare sentences in advance, and ask people to read them
 - Easy to obtain the reference
- Non-read speech (spontaneous): we have to transcribe by listening the audio, expensive

Read speech examples

- Read a prompt
- We can make a pair data of a prompt and corresponding audio
- Ex) common voice: <u>https://commonvoice.mozilla.org/en</u>
- Easy to collect
 - We still need to check whether the person can correctly utter a prompt
- Easy to anonymize
- Not a real conversation

Spontaneous speech

• Transcribe actual recording

- Real, real, real
- Takes very long time to transcribe it
 - 2 minutes of the switchboard audio sample takes 30 minutes (for the beginner)
 - Need some postprocessing (anonymization, filler handling, etc.)

Single speaker processing to conversation processing

Single speaker Close-talking microphone Error rate <5 % Conversation analysis Distant microphone Error rate ~40%

CHiME-3

http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/

Cafe

Street

Bus

Pedestrian area

CHiME-6 examples https://chimechallenge.github.io/chime6/

The CHiME-6 recording setup

Data has been captured with 32 audio channels and 6 video channels

- Participants' microphones
 - Binaural in-ear microphones recorded onto stereo digital recorders
 - Primarily for transcription but also uniquely interesting data
 - Channels: 4 x 2
- Distant microphones
 - Six separate Microsoft Kinect devices
 - Two Kinects per living area (kitchen, dining, sitting)
 - Arranged so that video captures most of the living space
 - Channel: 6 x 4 audio and 6 video

Example recording setups

Unit 1

Ceiling height: Kitchen: 2.7m Dining: 2.7m Uwng: 2.7m

S04

Session ID: S04 August 12, 2017 18:03 PST

Session ID: S23 September 22, 2017 14:53 PST

Spontaneous speech

- Transcribe actual recording
 - Example based on Audacity (developed at CMU!)

- Takes very long time to transcribe it
 - 2 minutes of the switchboard audio sample takes 30 minutes (for the beginner)
- Need some postprocessing (anonymization, filler handling, etc.)

How to transcribe an audio with Audacity?

Where we found the speech data?

- LDC, ELRA, other university or government institution
 - <u>https://www.ldc.upenn.edu/</u>
 - Well managed, license restricted
 - Famous ASR benchmarks (e.g., TIMIT, WSJ, Switchboard)
- Voxforge, openslr, commonvoice, zenodo
 - We can find less license restricted data (e.g., Creative Commons)
- Audio books, public recordings with captions (e.g., YouTube, Podcast, TED talk, Parliament or other government recordings, Bible)
 - Need some cares for the license and post processing
 - The data will be updated very frequently (deletion, modification, API change, etc.)
 - CMU Wilderness has 700(!) languages (20 hours each)

How many hours of training data do we need?

- We often use "hour" as a unit
- Commercial products: More than thousand hours
 - Very limited languages as public data, e.g., English, Mandarin, Japanese, German, Russian
- Do some ASR research experiments: ~100 hours
- Less than 100 hours: Low-resource language in ASR
 Pre-training/fine-tuning is changing the game

Table of Contents

- What is speech?
- Speech applications
- Speech databases
- Speech hierarchy

Speech <-> Text

Text: I want to go to the CMU campus

Speech <-> Phonem <-> Text Speech sound:

Phoneme: AY W AA N T T UW G OW T UW DH AH S IY EH M Y UW K AE M P AH S

Text: I want to go to the CMU campus

What is phone and phoneme??? GO TO: "g oʊ t u" or "G OW T UW"

- Phone: g oʊ t u
 - Devised by International Phonetic Association
 - Not applicable to all languages, needs special characters, too many variations, use of them depending on linguists
- Phoneme: one of the units of that distinguish one word from another in a particular language
 - /r/ and /l/ are degenerated in some languages (e.g., "rice" and "lice" sounds same for me!)
 - ARPAbet vs. International Phonetic Alphabet (IPA)
 - ARPAbet: G OW T UW
 - Proposed by ARPA for the development of speech recognition of only "American English"
 - Represented by ASCII characters

Pronunciation dictionary

- CMU dictionary
 - http://www.speech.cs.cmu.edu/cgi-bin/cmudict
- "I want to go to the CMU campus"
 →AY W AA N T T UW G OW T UW DH AH S IY EH M Y UW K AE M P AH S
- Powerful, but limited
- Out of vocabulary issue, especially new word
 - → Grapheme2Phoneme mapping based on machine learning

Let's play the CMU dictionary!

• Access: http://www.speech.cs.cmu.edu/cgi-bin/cmudict

• Find some in-vocabulary words

• Find five out-of-vocabulary words

Multilingual phone dictionary

• https://en.wiktionary.org/wiki/Wiktionary:Main_Page

Multilingual speech recognition (phone based)

- Try to split the problem from speech to phoneme and phoneme to text
- Speech to phone: language independent (acoustic model)
- Phone to phoneme, phoneme to word: language dependent (lexicon model)

\rightarrow

- Build speech to phone based on universal acoustic model
- Linguistic knowledge to make a lexicon model

Multilingual speech recognition (phone based)

- Try to split the problem from speech to phoneme and phoneme to text
- Speech to phone: language independent (acoustic model)
- Phone to phoneme, phoneme to word: language dependent (lexicon model)

\rightarrow

- Build speech to phone based on universal acoustic model
- Linguistic knowledge to make a lexicon model

Other units?

- Syllable {C*} V {C*}
- Allophone: /k/ can be different depending on the context (/a/-)/k/(-/a/), (/a/-)/k/(-/i/)
- Pinyin
- Etc.

Summary of today's talk

- Speech: sound waveform but used by human for the communication
- Speech applications: many applications
- Speech data: read vs. spontaneous, various sources
- Speech hierarchy: introduction of phone and phoneme

 The next lectures will introduce two main applications, ASR and TTS
Assignment 3