DSTA Multilingual Class 2021

Automatic Speech Recognition

Table of Contents

- Speech recognition demo & Evaluation metrics
- (a bit) mathematical formulation of speech recognition
- Standard speech recognition pipeline

Demonstration (Japanese, Google voice search)

Sometimes working, sometimes failed

```
Reference)
I want to go to the CMU campus
Recognition result)
I want to go to the gym you can
```

Sometimes working, sometimes failed

Reference)

CMU大学のキャンパスに行きたいです

Recognition result)

CMU洋楽のキャンパスに行きたいです

- Sentence error rate
 - An entire sentence (utterance) is correct or not (100% error in the case below)

```
Reference)
I want to go to the CMU campus
Recognition result)
I want to go to the gym you can
```

• Too strict, and needs to consider some local correctness

- Word error rate (WER)
 - Using edit distance word-by-word:

```
Reference)
I want to go to the CMU campus
Recognition result)
I want to go to the gym you can
```

- # insertion errors = 1, # substitution errors = 2, # of deletion errors = 0 → Edit distance = 3
- Word error rate (%): Edit distance (=3) / # reference words (=8) * 100 = 37.5%
- How to compute WERs for languages that do not have word boundaries?
 - Chunking or using character error rate

- Character error rate (CER)
 - Using edit distance character-by-character:

```
Reference)
CMU大学のキャンパスに行きたいです
Recognition result)
CMU洋楽のキャンパスに行きたいです
```

- # insertion errors = 0, # substitution errors = 2, # of deletion errors = 0
 ⇒ Edit distance = 2
- Character error rate (%): Edit distance (=2) / # reference words (=18) * 100 = 11.1%

- Other metrics
 - Phoneme error rate (need a pronunciation dictionary)
 - Frame error rate (need an alignment)
- NIST Speech Recognition Scoring Toolkit (SCTK)
 - ftp://jaguar.ncsl.nist.gov/pub/sctk-2.4.10-20151007-1312Z.tar.bz2

• WER can be > 100%, insertion case, deletion case

Speech recognition research is easy (?)

- We have WER or CER
- Objective, easy to obtain, very application-specific, single objective
- This can show the clear progress of technologies
- This would be one reason that the effectiveness of deep learning was first shown in speech

Table of Contents

- Speech recognition demo & Evaluation metrics
- Standard speech recognition pipeline
- (a bit) mathematical formulation of speech recognition

Speech Recognition

Mapping physical signal sequence to linguistic symbol sequence

"That's another story"

$$W = \{w_n \in \mathcal{V} | n = 1, \dots, N\}$$
$$N = 3$$

Automatic speech recognition

Automatic speech recognition

- Instead of starting from the waveform, we will often start from speech features (MFCC, etc.)
 through the feature extraction module
- Let's think of the conversion from speech feature O to text W

Speech recognition with a probabilistic formulation

• MAP decision theory: Estimate the most probable word sequence \hat{W} among all possible word sequences $\hat{\mathcal{W}}$ (I'll omit the domain sometimes) $\hat{W} = \operatorname{argmax} p(W|O)$

Feature extraction

ASR

Feature extraction

ASR

Feature extraction

 $W \in \mathcal{W}$

Probabilistic rules

Product rule

$$p(x|y)p(y) = p(x,y)$$

Sum rule

$$p(y) = \sum_{x} p(x, y)$$

Conditional independence assumption

$$p(x|y,z) = p(x|z) \qquad p(x,y|z) = p(x|z)p(y|z)$$

- Noisy channel model
 - Regarding O as a probabilistic variable (noisy observation)
 - Use the product rule

$$\underset{W}{\operatorname{argmax}} p(W|O) = \underset{W}{\operatorname{argmax}} \frac{p(O|W)p(W)}{p(O)}$$
$$= \underset{W}{\operatorname{argmax}} p(O|W)p(W)$$

Likelihood

Prior

Noisy channel model

$$\underset{W}{\operatorname{argmax}} p(W|O) = \underset{W}{\operatorname{argmax}} \frac{p(O|W)p(W)}{p(O)}$$
$$= \underset{W}{\operatorname{argmax}} p(O|W)p(W)$$

- Solving generating process of noisy observations!!
- Still difficult to deal with them....

Speech <-> Text

Speech *O*:

Text W: I want to go to the CMU campus

Speech <-> Phoneme <-> Text

Speech *O*:

Phoneme L: AY W AA N T T UW G OW T UW DH AH S IY EH M Y UW K AE M P AH

Text W: I want to go to the CMU campus

- Further factorize the model with phoneme
 - Let $L=(l_i\in\{/\mathrm{AA}/,/\mathrm{AE}/,\cdots\}|i=1,\cdots,J)$ be a phoneme sequence

$$\arg \max_{W} p(W|O)$$

- Further factorize the model with phoneme
 - Let $L=(l_i\in\{/\mathrm{AA}/,\,/\mathrm{AE}/,\cdots\}|i=1,\cdots,J)$ be a phoneme sequence

$$\arg\max_{W} p(W|O) = \arg\max_{W} \sum_{L} p(W,L|O)$$
 Sum rule

- Further factorize the model with phoneme
 - Let $L=(l_i\in\{/\mathrm{AA}/,/\mathrm{AE}/,\cdots\}|i=1,\cdots,J)$ be a phoneme sequence

$$\arg\max_{W} p(W|O) = \arg\max_{W} \sum_{L} p(W,L|O)$$
 Sum rule
$$= \arg\max_{W} \sum_{L} \frac{p(O|W,L)p(L|W)p(W)}{p(O)}$$
 Product rule

- Further factorize the model with phoneme
 - Let $L=(l_i\in\{/\mathrm{AA}/,\,/\mathrm{AE}/,\cdots\}|i=1,\cdots,J)$ be a phoneme sequence

$$\begin{split} \arg\max_W p(W|O) &= \arg\max_W \sum_L p(W,L|O) \\ &= \arg\max_W \sum_L \frac{p(O|W,L)p(L|W)p(W)}{p(O)} \quad \text{Product rule} \\ &= \arg\max_W \sum_L p(O|W,L)p(L|W)p(W) \quad \underset{\text{not depend on } W}{\operatorname{lgnore}} \\ \end{split}$$

- Further factorize the model with phoneme
 - Let $L=(l_i\in\{/\mathrm{AA}/,\,/\mathrm{AE}/,\cdots\}|i=1,\cdots,J)$ be a phoneme sequence

$$\begin{split} \arg\max_W p(W|O) &= \arg\max_W \sum_L p(W,L|O) \\ &= \arg\max_W \sum_L \frac{p(O|W,L)p(L|W)p(W)}{p(O)} \quad \text{Product rule} \\ &= \arg\max_W \sum_L p(O|W,L)p(L|W)p(W) \quad \underset{\text{not depend on } W}{\operatorname{lgnore}} \, p(O) \text{ as it does not depend on } W \\ &= \arg\max_W \sum_L p(O|L)p(L|W)p(W) \quad \text{Conditional independence assumption} \end{split}$$

Noisy channel model

$$\arg \max_{W} p(W|O) = \arg \max_{W} p(O|W)p(W)$$

$$\approx \arg \max_{W} \sum_{L} p(O|L)p(L|W)p(W)$$

Speech recognition

• p(O|L): Acoustic model (Hidden Markov model)

• p(L|W): Lexicon

• p(W): Language model (n-gram)

Noisy channel model

W: Target language text

Y: Source language text

$$\underset{W}{\operatorname{arg max}} p(W|Y) = \underset{W}{\operatorname{arg max}} p(Y|W)p(W)$$

Google Translate

Machine translation

- p(Y|W): Translation model
- p(W): Language model

DETECT LANGUAGE ENGLISH SPANISH FRENCH

→ ENGLISH SPANISH ARABIC

→ Translation

Speech recognition pipeline G OW T UW G OW Z T UW "I want to go to CMU campus" **Feature Acoustic** Language Lexicon modeling extraction modeling "go to" "go two" "go too" "goes to" W"goes two" "goes too" $\hat{W} = \operatorname{argmax} p(W|O)$ $W \in \mathcal{W}$

Speech recognition pipeline

Please remember the noisy channel model

- Factorization
- Conditional independence (Markov) assumptions

We can elegantly factorize the speech recognition problem with a reasonable subproblem

In the rest of courses, I'll introduce

- A bit further details of acoustic, lexicon, and language models
 - More and more factorization, conditional independence assumptions
- I'll skip these parts. If you want to know more about details, please check some other materials or take 11-751 "Speech Recognition and Understanding"
- For example, In 11-751 "Speech Recognition and Understanding", I'll spend 30% of the entire semester for this problem

Table of Contents

- Speech recognition demo & Evaluation metrics
- (a bit) mathematical formulation of speech recognition
- Standard speech recognition pipeline

Main blocks

Main blocks (end-to-end ASR)

Speech recognition pipeline

Waveform to speech feature

- Performed by so-called feature extraction module
 - Mel-frequency cepstral coefficient (MFCC), Perceptual Linear Prediction (PLP) used for Gaussian mixture model (GMM)
 - Log Mel filterbank used for deep neural network (DNN)
- Time scale
 - 0.0625 milliseconds (16kHz) to 10 milliseconds
- Type of values
 - Scalar (or discrete) to 12-dimensional vector
- Mostly language-independent process
 - Some languages use special features, e.g., pitch in Mandarin

What kind of representation are desired?

- Need to preserve phonetic/linguistic information
- While suppressing irrelevant information (speakers and noises)
- Better to consider the compatibility with backend modules

- Perceptual Linear Prediction (PLP) or multilayer perceptron tandem (MLP-Tandem)
- Learnable frontend (CNN)
- Self-supervised learning (HuBERT)

Speech recognition pipeline

Speech feature to phoneme

- Performed by so-called acoustic modeling module
 - Hidden Markov model (HMM) with GMM as an emission probability function
 - Hidden Markov model (HMM) with DNN as an emission probability function
- Time scale
 - 10 milliseconds to ~100 milliseconds (depending on a phoneme)
- Type of values
 - 12-dimensional continuous vector to 50 categorical value (~6bit)
- Mostly language independent
 - Map of the speech feature (language independent) to phoneme
- It can be a probability of possible phoneme sequences, e.g.,

G OW T UW or G OW Z T UW with some scores

Acoustic model p(O|L)

- O and L are different lengths
- Align speech features and phoneme sequences by using HMM

- Provide p(O|L) based on this alignment and model
- The most important problem in speech recognition

Speech recognition pipeline

Phoneme to word

- Performed by lexicon module
 - American English: CMU dictionary
- Time scale
 - 100 milliseconds (depending on a phoneme) to 1 second (depending on a word and also language)
- Type of values
 - 50 categorical value (~6bit) to 100K categorical value (~2Byte)
- Language dependent
- It can be multiple word sequences (one to many)

Lexicon p(L|W)

- Basically use a pronunciation dictionary, and map a word to the corresponding phoneme sequence
 - with the probability = 1.0 when single pronunciation
 - with the probability = 1.0/J when multiple (J) pronunciations

$$p(L|W) = p(/T/, /OW/|"two") = 1.0$$

What is phone and phoneme??? GO TO: "g oʊ t u" or "G OW T UW"

- Phone: g oʊ t u
 - Devised by International Phonetic Association
 - Physical categorization of speech sound
 - Not applicable to all languages, needs special characters, too many variations
- Phoneme: one of the units that distinguish one word from another in a particular language
 - /r/ and /l/ are degenerated in some languages (e.g., "rice" and "lice" sounds same for me!). Then, we don't have to distinguish them.
 - ARPAbet: G OW T UW
 - Proposed by ARPA for the development of speech recognition of only "American English"
 - Represented by ASCII characters

Pronunciation dictionary

- CMU dictionary
 - http://www.speech.cs.cmu.edu/cgi-bin/cmudict

"I want to go to the CMU campus"

→AY W AA N T T UW G OW T UW DH AH S IY EH M Y UW K AE M P AH S

- Powerful, but limited
- Out of vocabulary issue, especially new word
 - → Grapheme2Phoneme mapping based on machine learning

Let's play the CMU dictionary!

Access: http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Find some in-vocabulary words

• Find five out-of-vocabulary words

Multilingual phone dictionary

• https://en.wiktionary.org/wiki/Wiktionary:Main Page

Speech recognition pipeline

- Performed by language modeling module p(W)
 - N-gram
 - Recurrent neural network language model (RNNLM)
- From training data, we can basically find how possibly "to", "two", and "too" will be appeared after "go"
 - Part of WSJ training data, 37,416 utterances
 - "go to": **51** times
 - "go two":
 - "go too":

THE WALL STREET JOURNAL.

- Performed by language modeling module p(W)
 - N-gram
 - Recurrent neural network language model (RNNLM)
- From training data, we can basically find how possibly "to", "two", and "too" will be appeared after "go"
 - Part of WSJ training data, 37,416 utterances
 - "go to": **51** times
 - "go two": **0** times
 - "go too": **0** times

- Performed by language modeling module p(W)
 - N-gram
 - Recurrent neural network language model (RNNLM)
- From training data, we can basically find how possibly "to", "two", and "too" will be appeared after "go"
 - WSJ all text data, 6,375,622 sentences
 - "go to": **2710** times
 - "go two":
 - "go too":

- Performed by language modeling module p(W)
 - N-gram
 - Recurrent neural network language model (RNNLM)
- From training data, we can basically find how possibly "to", "two", and "too" will be appeared after "go"
 - WSJ all text data, 6,375,622 sentences
 - "go to": **2710** times
 - "go two": 2 times, e.g., "those serving shore plants often go two hundred miles or more"
 - "go too":

- Performed by language modeling module p(W)
 - N-gram
 - Recurrent neural network language model (RNNLM)
- From training data, we can basically find how possibly "to", "two", and "too" will be appeared after "go"
 - WSJ all text data, 6,375,622 sentences
 - "go to": **2710** times
 - "go two": 2 times, e.g., "those serving shore plants often go two hundred miles or more"
 - "go too": **41** times, e.g., "he could go too far"

- Performed by language modeling module p(W)
 - N-gram
 - Recurrent neural network language model (RNNLM)
- From training data, we can basically find how possibly "to", "two", and "too" will be appeared after "go"
 - WSJ all text data, 6,375,622 sentences
 - "go to": **2710** times
 - "go two": 2 times, e.g., "those serving shore plants often go two hundred miles or more"
 - "go too": 41 times, e.g., "he could go too far"
- Language dependent

Building speech recognition is really difficult...

- We need to develop all components
- Each component requires a lot of background knowledge
- We need to tune hyper-parameters in each module

End-to-end speech recognition

How to apply it to the other language?

How to apply it to the other language?

- We can just change the lexicon and language models (dictionary and text only data)
- Not easy for end-to-end ASR (we need parallel data)

Summary

- Speech recognition
 - Well defined problem (input: sound, output: text, evaluation metric)
 - The problem is well factorized with 1) feature extraction, 2) acoustic model, 3) lexicon, and 4) language model
 - 1 and 2 are mostly language intendent while 3 and 4 are language dependent

Discussion

- 1. Please try one of speech recognition engines in **English** (Google, Apple, Amazon, etc.)
 - If you find some recognition errors, please discuss why such errors occur
 - You can do some stress tests by making a difficult situation for the engine
- 2. Please try the above speech recognition engine in the other language
 - If you find some difference between English and the other language for the performance or behavior, please discuss it

In my case, I found that English and Japanese are equally good in terms of the ASR performance, but the spoken language understanding part in Japanese was very poor...