
CS11-747 Neural Networks for NLP

Intro/ 
Why Neural Nets for NLP?

Graham Neubig

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

Language is Hard!

Are These Sentences OK?
• Jane went to the store.

• store to Jane went the.

• Jane went store.

• Jane goed to the store.

• The store went to Jane.

• The food truck went to Jane.

Engineering Solutions
• Jane went to the store.

• store to Jane went the.

• Jane went store.

• Jane goed to the store.

• The store went to Jane.

• The food truck went to Jane.

} Create a grammar of
the language

} Consider
morphology and exceptions

} Semantic categories,
preferences

} And their exceptions

Are These Sentences OK?
• ジェインは店へ行った。

• は店行ったジェインは。

• ジェインは店へ行た。

• 店はジェインへ行った。

• 屋台はジェインのところへ行った。

Phenomena to Handle
• Morphology

• Syntax

• Semantics/World Knowledge

• Discourse

• Pragmatics

• Multilinguality

Neural Networks:
A Tool for Doing Hard Things

An Example Prediction Problem:
Sentence Classification

I hate this movie

I love this movie

very good
good

neutral
bad

very bad

very good
good

neutral
bad

very bad

A First Try:
Bag of Words (BOW)

I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores

softmax

probs

Build It, Break It

There’s nothing I don’t
love about this movie

very good
good

neutral
bad

very bad

I don’t love this movie

very good
good

neutral
bad

very bad

https://bibinlp.umiacs.umd.edu

Combination Features

• Does it contain “don’t” and “love”?

• Does it contain “don’t”, “i”, “love”, and “nothing”?

Basic Idea of Neural Networks
(for NLP Prediction Tasks)

I hate this movie

lookup lookup lookup lookup

softmax

probs

some complicated
function to extract

combination features
(neural net)

scores

Computation Graphs
The Lingua Franca of Neural Nets

y = x

>
Ax+ b · x+ c

A node is a {tensor, matrix, vector, scalar} value

expression:

x

graph:

y = x

>
Ax+ b · x+ c

x

expression:

graph:

An edge represents a function argument  
(and also an data dependency). They are just  
pointers to nodes.
A node with an incoming edge is a function of
that edge’s tail node.

f(u) = u>

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .@F

@f(u)

@f(u)

@u

@F
@f(u)

=

✓
@F

@f(u)

◆>

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

expression:

graph:

Functions can be nullary, unary,  
binary, … n-ary. Often they are unary or binary.

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

expression:

graph:

Computation graphs are directed and acyclic (in DyNet)

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

x A

f(x,A) = x

>
Ax

@f(x,A)

@A
= xx

>

@f(x,A)

@x
= (A> +A)x

expression:

graph:

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi

expression:

graph:

y = x

>
Ax+ b · x+ c

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

y
f(x1, x2, x3) =

X

i

xi

expression:

graph:

variable names are just labelings of nodes.

Algorithms (1)

• Graph construction

• Forward propagation

• In topological order, compute the value of the
node given its inputs

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

x

>
Ax

Forward Propagation

x

f(u) = u>

A

f(U,V) = UV

f(M,v) = Mv

b

f(u,v) = u · v

c

f(x1, x2, x3) =
X

i

xi
graph:

x

>

x

>
A

b · x

x

>
Ax

Forward Propagation

x

>
Ax+ b · x+ c

Algorithms (2)
• Back-propagation:

• Process examples in reverse topological order

• Calculate the derivatives of the parameters with respect to
the final value 
(This is usually a “loss function”, a value we want to minimize)

• Parameter update:

• Move the parameters in the direction of this derivative  
 
W -= α * dl/dW

A Concrete Example

Neural Network Frameworks
Static Frameworks

Dynamic Frameworks
(Recommended!)

+Gluon

+Fold

Basic Process in Dynamic
Neural Network Frameworks

• Create a model

• For each example

• create a graph that represents the computation
you want

• calculate the result of that computation

• if training, perform back propagation and
update

DyNet
• Examples in this class will be in DyNet:

• intuitive, program like you think (c.f. TensorFlow,
Theano)

• fast for complicated networks on CPU (c.f.
autodiff libraries, Chainer, PyTorch)

• has nice features to make efficient
implementation easier (automatic batching)

Computation Graph
and Expressions

import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1,v2,v3,v5])

print v6
print v6.npvalue()

Computation Graph
and Expressions

import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1,v2,v3,v5])

print v6
print v6.npvalue()

expression 5/1

Computation Graph
and Expressions

import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1

v6 = dy.concatenate([v1,v2,v3,v5])

print v6
print v6.npvalue()

array([1., 2., 3., 4., 2., 4., 6., 8., 4., 8., 12., 16.])

• Create basic expressions.

• Combine them using operations.

• Expressions represent symbolic computations.

• Use: 
.value()  
.npvalue()  
.scalar_value()  
.vec_value()  
.forward()  
 to perform actual computation.

Computation Graph
and Expressions

Model and Parameters

• Parameters are the things that we optimize over
(vectors, matrices).

• Model is a collection of parameters.

• Parameters out-live the computation graph.

Model and Parameters
model = dy.Model()

pW = model.add_parameters((20,4))
pb = model.add_parameters(20)

dy.renew_cg()
x = dy.inputVector([1,2,3,4])
W = dy.parameter(pW) # convert params to expression
b = dy.parameter(pb) # and add to the graph

y = W * x + b

Parameter Initialization
model = dy.Model()

pW = model.add_parameters((4,4))

pW2 = model.add_parameters((4,4), init=dy.GlorotInitializer())

pW3 = model.add_parameters((4,4), init=dy.NormalInitializer(0,1))

pW4 = model.parameters_from_numpu(np.eye(4))

Trainers and Backdrop

• Initialize a Trainer with a given model.

• Compute gradients by calling expr.backward()
from a scalar node.

• Call trainer.update() to update the model
parameters using the gradients.

Trainers and Backdrop
model = dy.Model()

trainer = dy.SimpleSGDTrainer(model)

p_v = model.add_parameters(10)

for i in xrange(10):
 dy.renew_cg()

 v = dy.parameter(p_v)
 v2 = dy.dot_product(v,v)
 v2.forward()

 v2.backward() # compute gradients

 trainer.update()

Trainers and Backdrop
model = dy.Model()

trainer = dy.SimpleSGDTrainer(model)

p_v = model.add_parameters(10)

for i in xrange(10):
 dy.renew_cg()

 v = dy.parameter(p_v)
 v2 = dy.dot_product(v,v)
 v2.forward()

 v2.backward() # compute gradients

 trainer.update()

 dy.SimpleSGDTrainer(model,...)

 dy.MomentumSGDTrainer(model,...)

 dy.AdagradTrainer(model,...)

 dy.AdadeltaTrainer(model,...)

 dy.AdamTrainer(model,...)

Training with DyNet
• Create model, add parameters, create trainer.

• For each training example:

• create computation graph for the loss

• run forward (compute the loss)

• run backward (compute the gradients)

• update parameters

Example Implementation
(in DyNet)

Bag of Words (BOW)
I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores

softmax

probs

Continuous Bag of Words
(CBOW)

I hate this movie

+

bias

=

scores

+ + +

lookup lookup lookuplookup

W

=

Deep CBOW
I hate this movie

+

bias

=

scores

W

+ + +
=

tanh( 
 W1*h + b1)

tanh( 
 W2*h + b2)

Class Format/Structure

Class Format
• Reading: Before the class

• Quiz: Simple questions about the required reading
(should be easy)

• Summary/Elaboration/Questions: Instructor or
TAs will summarize the material, elaborate on
details, and field questions

• Code Walk: The TAs (or instructor) will walk
through some demonstration code

Assignments
• Course is group (2-3) assignment/project based

• Assignment 1: Survey the field and implement a
baseline model

• Assignment 2: Re-implement and reproduce
results from a state-of-the-art model

• Project: Perform a unique research project that
either (1) improves on state-of-the-art, or (2)
applies neural net models to a unique task

Instructors/Office Hours
• Instructor: Graham Neubig  

 (Mon., 4:00-5:00PM GHC5409)

• TAs:

• Zhengzhong (Hector) Liu (Mon. 1:00-2:00PM,
GHC5517)

• Xuezhe (Max) Ma (Tue. 12:00-1:00PM, GHC5517)

• Daniel Clothiaux (Fri. 9:00-10:00AM, GHC5505)

• Piazza: http://piazza.com/cmu/fall2017/cs11747/home

http://piazza.com/cmu/fall2017/cs11747/home

Class Plan

Section 1: 
Models of Words

undeserved

NN

• Word representations using context

• Word representations using word form

• Speed tricks for neural networks

Section 2: 
Models of Sentences

undeserved

NN

• Bag of words, bag of n-grams, convolutional nets

• Recurrent neural networks and variations

• Applications of sentence modeling

this movie’s reputation is

Sec.3: Sequence-to-sequence Models
I hate this movie

LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

この 映画 が 嫌い

argmax

この 映画
argmax

が
argmax

嫌い
argmax

</s>
argmax

• Encoder decoder models

• Attentional models

Section 4: 
Structured Prediction Models

I hate this movie

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

PRP VB DT NN
• Structured perceptron, structured max margin

• Conditional random fields

Section 5: 
Models of Tree Structure

• Shift reduce, minimum spanning tree parsing

• Tree structured compositions

• Models of graph structures

I hate this movie

RNN

RNN

RNN

Section 6: 
Advanced Learning Techniques

• Variational Auto-encoders

• Adversarial Networks

• Marginal Likelihood, Reinforcement Learning

• Semi-supervised and Unsupervised Learning

Section 7: 
Neural Networks and Knowledge

• Learning from/for Relational Databases

• Interfacing with Relational Databases

• Machine Reading Models

• Reasoning with Neural Nets

animal

dog cat

is-a is-a

Section 8: 
Multi-task and Multilingual Learning

• Multi-task Learning Models

• Multilingual Learning of Representations

• Universal Analysis Models

I hate this movie
この 映画 が 嫌い

PRP VB DT NN

Section 9:  
Advanced Search Techniques

• Beam search and its variants

• A* search

Any Questions?

