CS11-747 Neural Networks for NLP Using/Evaluating Sentence Representations

Graham Neubig

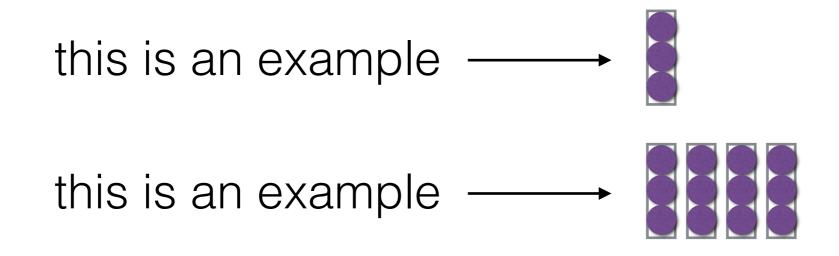
Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2017/</u>

Sentence Representations

• We can create a vector or sequence of vectors from a sentence



Obligatory Quote!

"You can't cram the meaning of a whole %&!\$ing sentence into a single \$&!*ing vector!" — Ray Mooney

How do We Use/Evaluate Sentence Representations?

- Sentence Classification
- Paraphrase Identification
- Semantic Similarity
- Entailment
- Retrieval

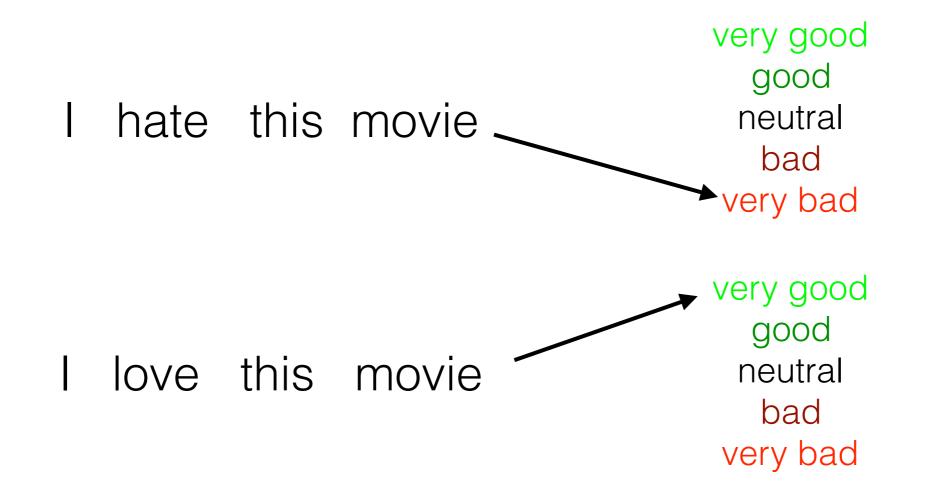
Goal for Today

- Introduce tasks/evaluation metrics
- Introduce common data sets
- Introduce methods, and particularly state of the art results

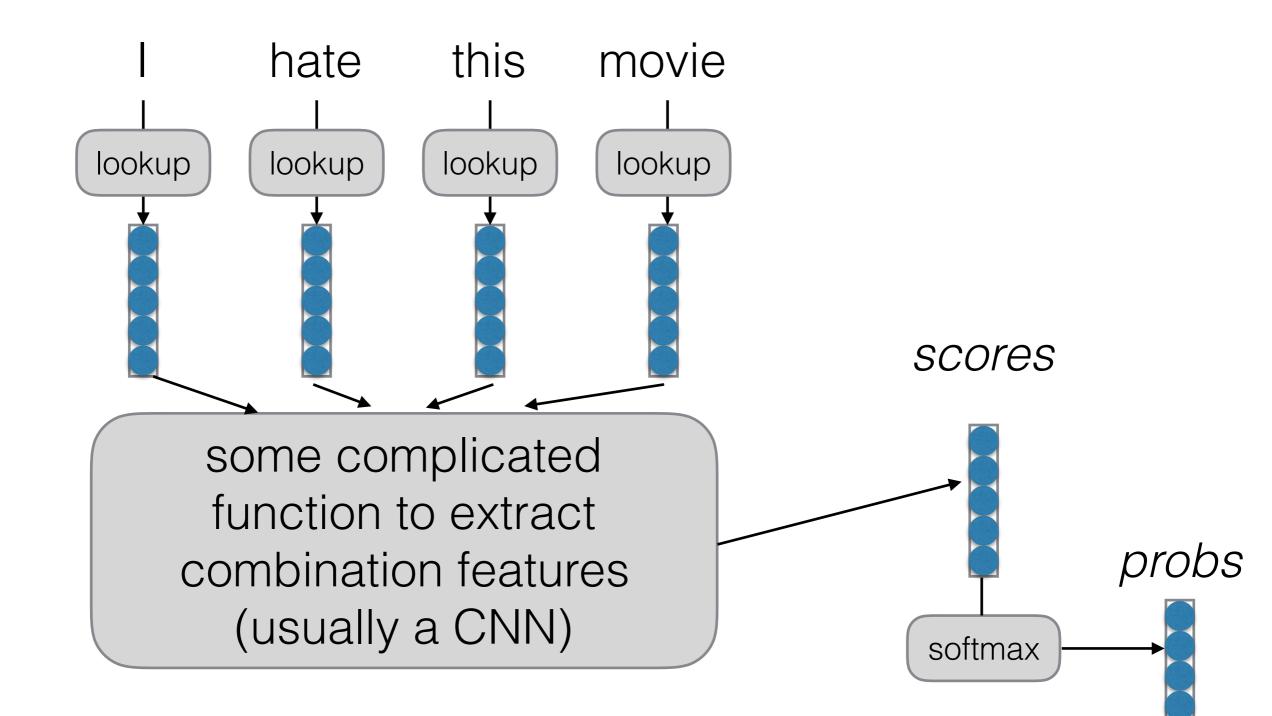
Sentence Classification

Sentence Classification

- Classify sentences according to various traits
- Topic, sentiment, subjectivity/objectivity, etc.

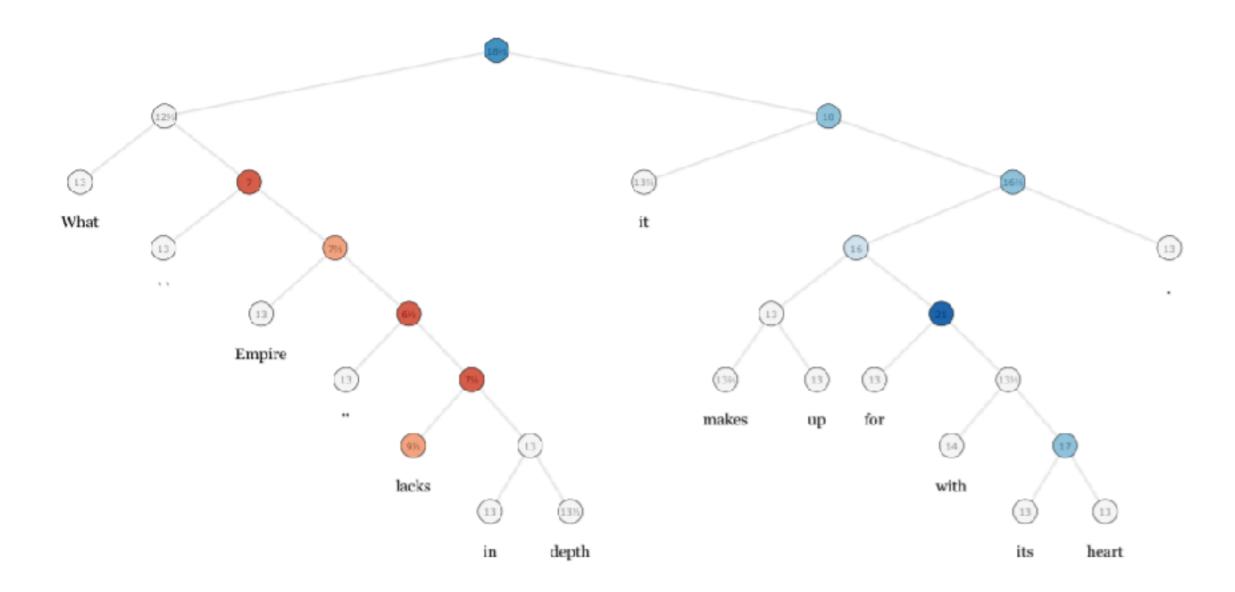


Model Overview (Review)



Data Example: Stanford Sentiment Treebank (Socher et al. 2013)

• In addition to standard tags, each constituent tagged with a sentiment value



Paraphrase Identification

Paraphrase Identification (Dolan and Brockett 2005)

• Identify whether A and B mean the same thing

Charles O. Prince, 53, was named as Mr. Weill's successor. Mr. Weill's longtime confidant, Charles O. Prince, 53, was named as his successor.

 Note: exactly the same thing is too restrictive, so use a loose sense of similarity

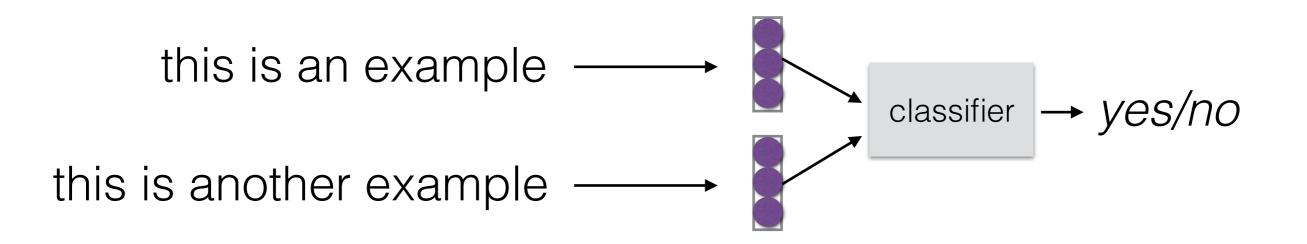
Data Example: Microsoft Research Paraphrase Corpus (Dolan and Brockett 2005)

Construction procedure

- Crawl large news corpus
- Identify sentences that are similar automatically using heuristics or classifier
- Have raters determine whether they are in fact similar (67% were)
- Corpus is high quality but small, 5,800 sentences
- **c.f.** Other corpora based on translation, image captioning

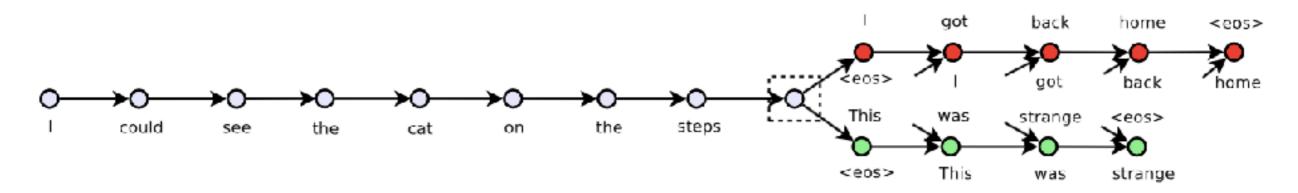
Models for Paraphrase Detection (1)

- Calculate vector representation
- Feed vector representation into classifier



Model Example: Skip-thought Vectors (Kiros et al. 2015)

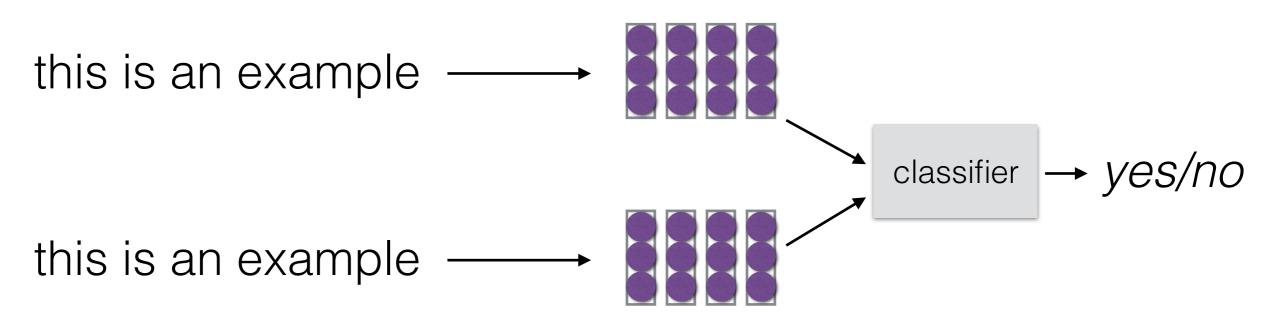
- General method for sentence representation
 - Unsupervised training: predict surrounding sentences on large-scale data (using encoder-decoder)
 - Use resulting representation as sentence representation



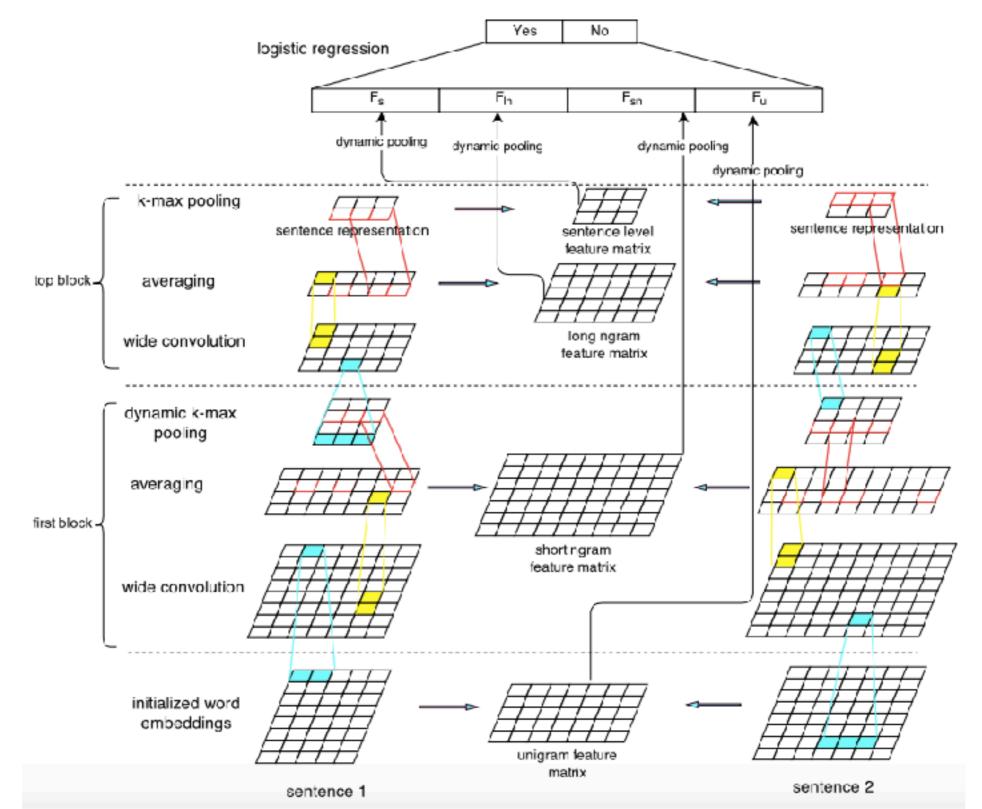
Train logistic regression on [|u-v|; u*v] (component-wise)

Models for Paraphrase Detection (2)

 Calculate multiple-vector representation, and combine to make a decision

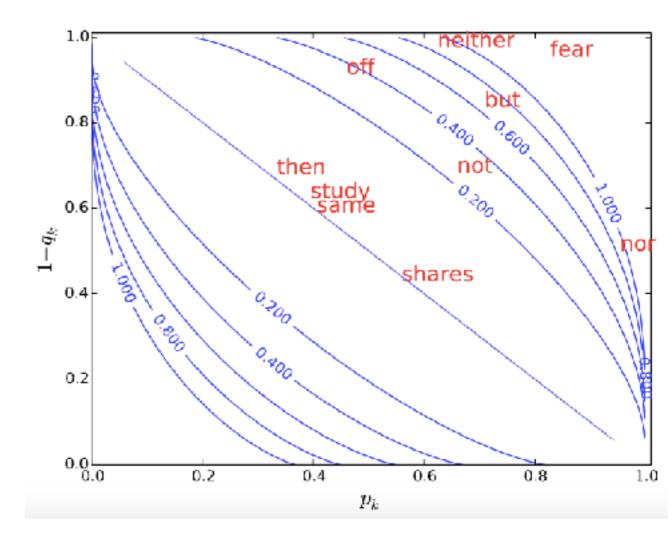


Model Example: Convolutional Features + Matrix-based Pooling (Yin and Schutze 2015)



Model Example: Paraphrase Detection w/ Discriminative Embeddings (Ji and Eisenstein 2013)

- Perform matrix factorization of word/ context vectors
 - Weight word/context vectors based on discriminativeness



- Also add features regarding surface match
- Current state-of-the-art on MSRPC

Semantic Similarity

Semantic Similarity/Relatedness (Marelli et al. 2014)

• Do two sentences mean something similar?

Relatedness score	Example
1.6	A: "A man is jumping into an empty pool"
	B: "There is no biker jumping in the air"
2.9	A: "Two children are lying in the snow and are making snow angels"
	B: "Two angels are making snow on the lying children"
3.6	A: "The young boys are playing outdoors and the man is smiling nearby"
	B: "There is no boy playing outdoors and there is no man smiling"
4.9	A: "A person in a black jacket is doing tricks on a motorbike"
	B: "A man in a black jacket is doing tricks on a motorbike"

• Like paraphrase identification, but with shades of gray.

Data Example: SICK Dataset (Marelli et al. 2014)

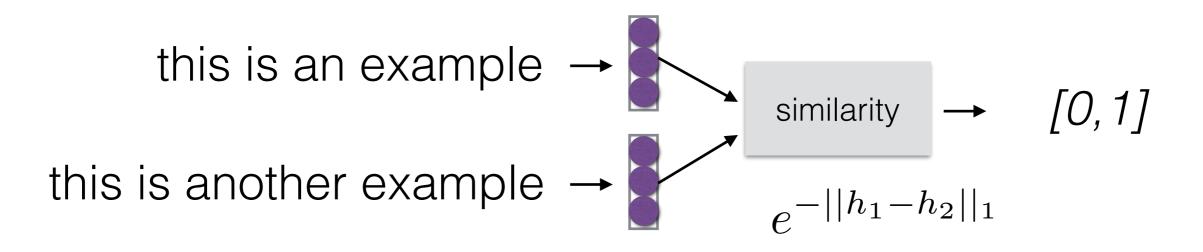
- Procedure to create sentences
 - Start with short flickr/video description sentences
 - Normalize sentences (11 transformations such as active↔passive, replacing w/ synonyms, etc.)
 - Create opposites (insert negation, invert determiners, replace words w/ antonyms)
 - Scramble words
- Finally **ask humans to measure semantic relatedness** on 1-5 Likert scale of "completely unrelated - very related"

Evaluation Procedure

- Input two sentences into model, calculate score
- Measure correlation of the machine score with human score (e.g. Pearson's correlation)

Model Example: Siamese LSTM Architecture (Mueller and Thyagarajan 2016)

Use siamese LSTM architecture with e^-L1 as a similarity metric



- **Simple model!** Good results due to engineering? Including pre-training, using pre-trained word embeddings, etc.
- Results in best reported accuracies for SICK task

Textual Entailment

Textual Entailment (Dagan et al. 2006, Marelli et al. 2014)

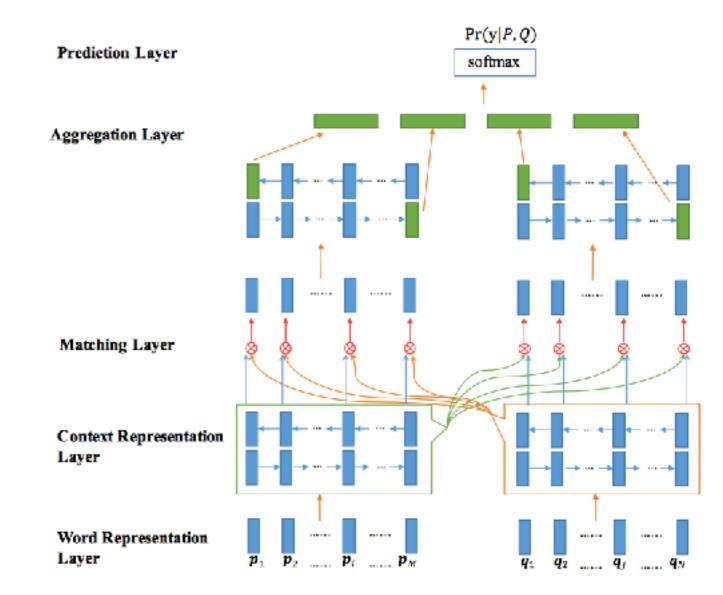
- Entailment: if A is true, then B is true (c.f. paraphrase, where opposite is also true)
 - The woman bought a sandwich for lunch
 → The woman bought lunch
- Contradiction: if A is true, then B is not true
 - The woman bought a sandwich for lunch
 → The woman did not buy a sandwich
- Neutral: cannot say either of the above
 - The woman bought a sandwich for lunch
 → The woman bought a sandwich for dinner

Data Example: Stanford Natural Language Inference Dataset (Bowman et al. 2015)

- Data created from Flickr captions
- **Crowdsource** creation of one entailed, neutral, and contradicted caption for each caption
- **Verify** the captions with 5 judgements, 89% agreement between annotator and "gold" label
- Also, expansion to multiple genres: MultiNLI

Model Example: Multi-perspective Matching for NLI (Wang et al. 2017)

- Encode, aggregate information in both directions, encode one more time, predict
- Strong results on SNLI



 Lots of other examples on SNLI web site: https://nlp.stanford.edu/projects/snli/ Interesting Result: Entailment → Generalize (Conneau et al. 2017)

- Skip-thought vectors are **unsupervised training**
- Simply: can **supervised training** for a task such as inference learn generalizable embeddings?
 - Task is more difficult and requires capturing nuance → yes?
 - Data is much smaller \rightarrow no?
- Answer: **yes**, generally better

Retrieval

Retrieval Idea

- Given an input sentence, find something that matches
 - Text \rightarrow text (Huang et al. 2013)
 - Text \rightarrow image (Socher et al. 2014)
 - Anything to anything really!

Basic Idea

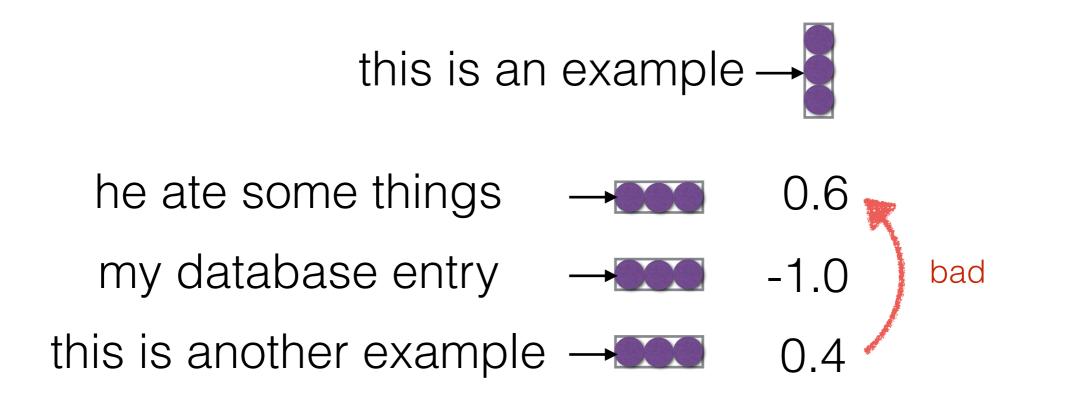
- First, encode entire target database into vectors
- Encode source query into vector
- Find vector with minimal distance

<u>DB</u>

this is an example

A First Attempt at Training

 Try to get the score of the correct answer higher than the other answers



Margin-based Training

 Just "better" is not good enough, want to exceed by a margin (e.g. 1)

this is an example \rightarrow he ate some things \rightarrow 0.6 my database entry \rightarrow -1.0 bad this is another example \rightarrow 0.8

Negative Sampling

• The database is too big, so only use a **small portion of the database as negative samples**

this is an example \rightarrow

he ate some things \rightarrow 0.6 my database entry \rightarrow 0.6 this is another example \rightarrow 0.8

Loss Function In Equations

$$L(x^*, y^*, S) = \sum_{x \in S} \max(0, 1 + s(x, y^*) - \underline{s(x^*, y^*)})$$
correct
input
negative
incorrect score
correct
output

Evaluating Retrieval Accuracy

- recall@X: "is the correct answer in the top X choices?"
- mean average precision: area under the precision recall curve for all queries

Let's Try it Out (on text-to-text) lstm-retrieval.py

Efficient Training

- Efficiency improved when using mini-batch training
- Sample a mini-batch, calculate representations for all inputs and outputs
- Use other elements of the minibatch as negative samples

Bidirectional Loss

- Calculate the hinge loss in both directions
- Gives a bit of extra training signal
- Free computationally (when combined with minibatch training)

Efficient Retrieval

- Again, the database may be too big to retrieve, use approximate nearest neighbor search
- Example: locality sensitive hashing

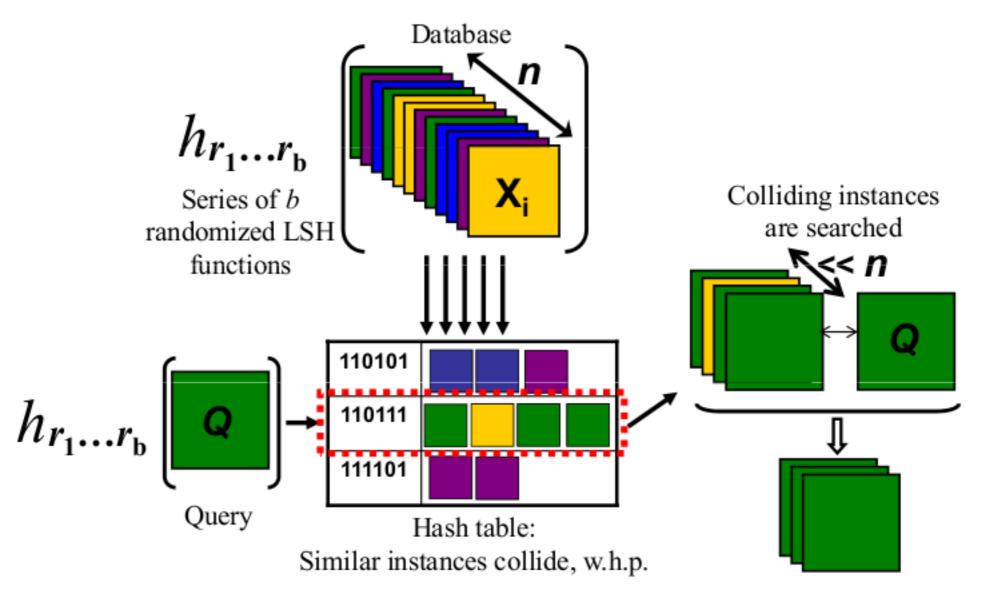


Image Credit: https://micvog.com/2013/09/08/storm-tirst-story-detection/

Data Example: Flickr8k Image Retrieval (Hodosh et al. 2013)

- Input text, output image
- 8000 images x 5 captions each
- Gathered by asking Amazon mechanical turkers to generate captions

Questions?