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What is Reinforcement 
Learning?

• Learning where we have an 

• environment X 

• ability to make actions A 

• get a delayed reward R 

• Example of pong: X is our observed image, A is 
up or down, and R is the win/loss at the end of the 
game



Why Reinforcement 
Learning in NLP?

• We may have a typical reinforcement learning 
scenario: e.g. a dialog where we can make 
responses and will get a reward at the end. 

• We may have latent variables, where we decide 
the latent variable, then get a reward based on 
their configuration. 

• We may have a sequence-level error function 
such as BLEU score that we cannot optimize 
without first generating a whole sentence.



Reinforcment Learning Basics: 
Policy Gradient 
(Review of Karpathy 2016)



Supervised Learning
• We are given the correct decisions 
 
 

• In the context of reinforcement learning, this is also called 
“imitation learning,” imitating a teacher (although imitation 
learning is more general)

`super(Y,X) = � logP (Y | X)



Self Training
• Sample or argmax according to the current model

Ŷ ⇠ P (Y | X) ˆY = argmaxY P (Y | X)or

• Use this sample (or samples) to maximize likelihood

• No correct answer needed! But is this a good idea? 

• One successful alternative: co-training, only use sentences 
where multiple models agree (Blum and Mitchell 1998)

`self(X) = � logP (

ˆY | X)



Policy Gradient/REINFORCE
• Add a term that scales the loss by the reward

`self(X) = �R(

ˆY , Y ) logP (

ˆY | X)

• Outputs that get a bigger reward will get a higher weight 

• Quiz: Under what conditions is this equal to MLE?



Credit Assignment for 
Rewards

• How do we know which action led to the reward? 

• Best scenario, immediate reward: 
 

• Worst scenario, only at end of roll-out: 
 

• Often assign decaying rewards for future events to take into 
account the time delay between action and reward

a1 a2 a3 a4 a5 a6
0 +1 0 -0.5 +1 +1.5

a1 a2 a3 a4 a5 a6
+3



Stabilizing Reinforcement 
Learning



Problems w/ Reinforcement 
Learning

• Like other sampling-based methods, reinforcement 
learning is unstable 

• It is particularly unstable when using bigger output 
spaces (e.g. words of a vocabulary) 

• A number of strategies can be used to stabilize



Adding a Baseline
• Basic idea: we have expectations about our reward 

for a particular sentence

“This is an easy sentence”
Reward

0.8 0.95
Baseline

“Buffalo Buffalo Buffalo” 0.3 0.1

B-R
-0.15
0.2

• We can instead weight our likelihood by B-R to 
reflect when we did better or worse than expected

`baseline(X) = �(R(

ˆY , Y )�B(

ˆY )) logP (

ˆY | X)

• (Be careful to not backprop through the baseline)



Calculating Baselines
• Choice of a baseline is arbitrary 

• Option 1: predict final reward using linear from current 
state (e.g. Ranzato et al. 2016) 

• Sentence-level: one baseline per sentence 

• Decoder state level: one baseline per output action 

• Option 2: use the mean of the rewards in the batch as 
the baseline (e.g. Dayan 1990)



Increasing Batch Size
• Because each sample will be high variance, we 

can sample many different examples before 
performing update 

• We can increase the number of examples (roll-outs) 
done before an update to stabilize 

• We can also save previous roll-outs and re-use 
them when we update parameters (experience 
replay, Lin 1993)



Warm-start
• Start training with maximum likelihood, then switch 

over to REINFORCE 

• Works only in the scenarios where we can run MLE 
(not latent variables or standard RL settings) 

• MIXER (Ranzato et al. 2016) gradually transitions from 
MLE to the full objective



When to Use Reinforcement 
Learning?

• If you are in a setting where the correct actions are not given, and the 
structure of the computation depends on the choices you make: 

• Yes, you have no other obvious choice. 

• If you are in a setting where correct actions are not given but 
computation structure doesn’t change. 

• A differentiable approximation (e.g. Gumbel Softmax) may be more 
stable. 

• If you can train using MLE, but want to use a non-decomposable loss 
function. 

• Maybe yes, but many other methods (max margin, min risk) also exist.



An Alternative: Value-based 
Reinforcement Learning



Policy-based vs. 
Value-based

• Policy-based learning: try to learn a good 
probabilistic policy that maximizes the expectation 
of reward 

• Value-based learning: try to guess the “value” of 
the result of taking a particular action, and take the 
action with the highest expected value



Action-Value Function
• Given a state s, we try to estimate the “value” of each action a 

• Value is the expected reward given that we take that action 
 
 

• e.g. in a sequence-to-sequence model, our state will be the 
input and previously generated words, action will be the 
next word to generate

• We then take the action that maximizes the reward 

• Note: this is not a probabilistic model!

Q(st, at) = E[
TX

t

R(at)]

ât = argmaxat
Q(st, at)



Estimating Value Functions
• Tabular Q Learning: Simply remember the Q 

function for every state and update  
 

• Neural Q Function Approximation: Perform 
regression with neural networks (e.g. Tesauro 1995)

Q(st, at) (1� ↵)Q(st, at) + ↵R(at)



Exploration vs. Exploitation
• Problem: if we always take the best option, we might get 

stuck in a local minimum 

• Note: this is less of a problem with stochastic policy-
based methods, as we randomly sample actions 

• Solution: every once in a while randomly pick an action 
with a certain probability ε 

• This is called the ε-greedy strategy 

• Intrinsic reward: give reward to models that discover new 
states (Schmidhuber 1991, Bellemare et al. 2016)



Examples of Reinforcement 
Learning in NLP



RL in Dialog
• Dialog was one of the first major successes in 

reinforcement learning in NLP (Survey: Young et al. 
2013) 

• Standard tools: Markov decision processes, 
partially observed MDPs (to handle uncertainty) 

• Now, neural network models for both task-based 
(Williams and Zweig 2017) and chatbot dialog (Li et 
al. 2017)



User Simulators for 
Reinforcement Learning in Dialog
• Problem: paucity of data! 

• Solution, create a user 
simulator that has an 
internal state (Schatzmann 
et al. 2007) 

• Dialog system must learn 
to track user state w/ 
incomplete information



Mapping Instructions to 
Actions

• Following windows commands with weak supervision 
based on progress (Branavan et al. 2009)

• Visual instructions with neural nets (Misra et al. 
2017)



Reinforcement Learning for Making 
Incremental Decisions in MT

• We want to translate before the end of the sentence 
for MT, agent decides whether to wait or translate 
(Grissom et al. 2014, Gu et al. 2017)



RL for Information Retrieval
• Find evidence for an information extraction task by 

searching the web as necessary (Narasimhan et al. 
2016) 
 
 
 
 
 

• Perform query reformulation (Nogueira and Cho 2017)



RL for Coarse-to-fine Question 
Answering (Choi et al. 2017)

• In a long document, it may be useful to first pare 
down sentences before reading in depth



RL to Learn Neural Network 
Structure (Zoph and Le 2016)

• Generate a neural network structure, try it, and 
measure the results as a reward



Questions?


