
CS11-747 Neural Networks for NLP
Reinforcement Learning for NLP

Graham Neubig

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

What is Reinforcement
Learning?

• Learning where we have an

• environment X

• ability to make actions A

• get a delayed reward R

• Example of pong: X is our observed image, A is
up or down, and R is the win/loss at the end of the
game

Why Reinforcement
Learning in NLP?

• We may have a typical reinforcement learning
scenario: e.g. a dialog where we can make
responses and will get a reward at the end.

• We may have latent variables, where we decide
the latent variable, then get a reward based on
their configuration.

• We may have a sequence-level error function
such as BLEU score that we cannot optimize
without first generating a whole sentence.

Reinforcment Learning Basics:
Policy Gradient
(Review of Karpathy 2016)

Supervised Learning
• We are given the correct decisions 
 
 

• In the context of reinforcement learning, this is also called
“imitation learning,” imitating a teacher (although imitation
learning is more general)

`super(Y,X) = � logP (Y | X)

Self Training
• Sample or argmax according to the current model

Ŷ ⇠ P (Y | X) ˆY = argmaxY P (Y | X)or

• Use this sample (or samples) to maximize likelihood

• No correct answer needed! But is this a good idea?

• One successful alternative: co-training, only use sentences
where multiple models agree (Blum and Mitchell 1998)

`self(X) = � logP (

ˆY | X)

Policy Gradient/REINFORCE
• Add a term that scales the loss by the reward

`self(X) = �R(

ˆY , Y) logP (

ˆY | X)

• Outputs that get a bigger reward will get a higher weight

• Quiz: Under what conditions is this equal to MLE?

Credit Assignment for
Rewards

• How do we know which action led to the reward?

• Best scenario, immediate reward: 
 

• Worst scenario, only at end of roll-out: 
 

• Often assign decaying rewards for future events to take into
account the time delay between action and reward

a1 a2 a3 a4 a5 a6
0 +1 0 -0.5 +1 +1.5

a1 a2 a3 a4 a5 a6
+3

Stabilizing Reinforcement
Learning

Problems w/ Reinforcement
Learning

• Like other sampling-based methods, reinforcement
learning is unstable

• It is particularly unstable when using bigger output
spaces (e.g. words of a vocabulary)

• A number of strategies can be used to stabilize

Adding a Baseline
• Basic idea: we have expectations about our reward

for a particular sentence

“This is an easy sentence”
Reward

0.8 0.95
Baseline

“Buffalo Buffalo Buffalo” 0.3 0.1

B-R
-0.15
0.2

• We can instead weight our likelihood by B-R to
reflect when we did better or worse than expected

`baseline(X) = �(R(

ˆY , Y)�B(

ˆY)) logP (

ˆY | X)

• (Be careful to not backprop through the baseline)

Calculating Baselines
• Choice of a baseline is arbitrary

• Option 1: predict final reward using linear from current
state (e.g. Ranzato et al. 2016)

• Sentence-level: one baseline per sentence

• Decoder state level: one baseline per output action

• Option 2: use the mean of the rewards in the batch as
the baseline (e.g. Dayan 1990)

Increasing Batch Size
• Because each sample will be high variance, we

can sample many different examples before
performing update

• We can increase the number of examples (roll-outs)
done before an update to stabilize

• We can also save previous roll-outs and re-use
them when we update parameters (experience
replay, Lin 1993)

Warm-start
• Start training with maximum likelihood, then switch

over to REINFORCE

• Works only in the scenarios where we can run MLE
(not latent variables or standard RL settings)

• MIXER (Ranzato et al. 2016) gradually transitions from
MLE to the full objective

When to Use Reinforcement
Learning?

• If you are in a setting where the correct actions are not given, and the
structure of the computation depends on the choices you make:

• Yes, you have no other obvious choice.

• If you are in a setting where correct actions are not given but
computation structure doesn’t change.

• A differentiable approximation (e.g. Gumbel Softmax) may be more
stable.

• If you can train using MLE, but want to use a non-decomposable loss
function.

• Maybe yes, but many other methods (max margin, min risk) also exist.

An Alternative: Value-based
Reinforcement Learning

Policy-based vs. 
Value-based

• Policy-based learning: try to learn a good
probabilistic policy that maximizes the expectation
of reward

• Value-based learning: try to guess the “value” of
the result of taking a particular action, and take the
action with the highest expected value

Action-Value Function
• Given a state s, we try to estimate the “value” of each action a

• Value is the expected reward given that we take that action 
 
 

• e.g. in a sequence-to-sequence model, our state will be the
input and previously generated words, action will be the
next word to generate

• We then take the action that maximizes the reward 

• Note: this is not a probabilistic model!

Q(st, at) = E[
TX

t

R(at)]

ât = argmaxat
Q(st, at)

Estimating Value Functions
• Tabular Q Learning: Simply remember the Q

function for every state and update  
 

• Neural Q Function Approximation: Perform
regression with neural networks (e.g. Tesauro 1995)

Q(st, at) (1� ↵)Q(st, at) + ↵R(at)

Exploration vs. Exploitation
• Problem: if we always take the best option, we might get

stuck in a local minimum

• Note: this is less of a problem with stochastic policy-
based methods, as we randomly sample actions

• Solution: every once in a while randomly pick an action
with a certain probability ε

• This is called the ε-greedy strategy

• Intrinsic reward: give reward to models that discover new
states (Schmidhuber 1991, Bellemare et al. 2016)

Examples of Reinforcement
Learning in NLP

RL in Dialog
• Dialog was one of the first major successes in

reinforcement learning in NLP (Survey: Young et al.
2013)

• Standard tools: Markov decision processes,
partially observed MDPs (to handle uncertainty)

• Now, neural network models for both task-based
(Williams and Zweig 2017) and chatbot dialog (Li et
al. 2017)

User Simulators for
Reinforcement Learning in Dialog
• Problem: paucity of data!

• Solution, create a user
simulator that has an
internal state (Schatzmann
et al. 2007)

• Dialog system must learn
to track user state w/
incomplete information

Mapping Instructions to
Actions

• Following windows commands with weak supervision
based on progress (Branavan et al. 2009)

• Visual instructions with neural nets (Misra et al.
2017)

Reinforcement Learning for Making
Incremental Decisions in MT

• We want to translate before the end of the sentence
for MT, agent decides whether to wait or translate
(Grissom et al. 2014, Gu et al. 2017)

RL for Information Retrieval
• Find evidence for an information extraction task by

searching the web as necessary (Narasimhan et al.
2016) 
 
 
 
 
 

• Perform query reformulation (Nogueira and Cho 2017)

RL for Coarse-to-fine Question
Answering (Choi et al. 2017)

• In a long document, it may be useful to first pare
down sentences before reading in depth

RL to Learn Neural Network
Structure (Zoph and Le 2016)

• Generate a neural network structure, try it, and
measure the results as a reward

Questions?

