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In Neural Networks, 
Tuning is Paramount!

• Everything is a hyperparameter 

• Network size/depth 

• Small model variations 

• Minibatch creation strategy 

• Optimizer/learning rate 

• Models are complicated and opaque, debugging can 
be difficult!



Understanding Your 
Problem



A Typical Situation

• You’ve implemented a nice model 

• You’ve looked at the code, and it looks OK 

• Your accuracy on the test set is bad 

• What do I do?



Possible Causes
• Training time problems

• Lack of model capacity 
• Inability to train model properly 
• Training time bug 

• Decoding time bugs
• Disconnect between test and decoding 
• Failure of search algorithm 

• Overfitting
• Mismatch between optimized function and eval



Debugging at Training Time



Identifying Training Time 
Problems

• Look at the loss function calculated on the training 
set 

• Is the loss function going down? 

• Is it going down basically to zero if you run 
training long enough (e.g. 20-30 epochs)? 

• If not, you have a training problem



Is My Model Too Weak?
• Your model needs to be big enough to learn 

• Model size depends on task 

• For language modeling, at least 512 nodes 

• For natural language analysis, 128 or so may do 

• Multiple layers are often better 

• For long sequences (e.g. characters) may need larger 
layers



Be Careful of Deep Models
• Extra layers can help, but can also hurt if you’re not careful due 

to vanishing gradients 

• Solutions:

Residual Connections (He et al. 2015) Highway Networks (Srivastava et al. 2015)



Trouble w/ Optimization
• If increasing model size doesn’t help, you may have 

an optimization problem 

• Possible causes:

• Bad optimizer 

• Bad learning rate 

• Bad initialization 

• Bad minibatching strategy



Reminder: Optimizers
• SGD: take a step in the direction of the gradient 

• SGD with Momentum: Remember gradients from past time 
steps to prevent sudden changes 

• Adagrad: Adapt the learning rate to reduce learning rate for 
frequently updated parameters (as measured by the variance of 
the gradient) 

• Adam: Like Adagrad, but keeps a running average of 
momentum and gradient variance 

• Many others: RMSProp, Adadelta, etc.  
(See Ruder 2016 reference for more details)



Learning Rate
• Learning rate is an important parameter 

• Too low: will not learn or learn vey slowly 

• Too high: will learn for a while, then fluctuate and 
diverge 

• Common strategy: start from an initial learning rate 
then gradually decrease 

• Note: need a different learning rate for each optimizer! 
(SGD default is 0.1, Adam 0.001)



Initialization
• Neural nets are sensitive to initialization, which results in 

different sized gradients 
• Standard initialization methods: 

• Gaussian initialization: initialize with a zero-mean 
Gaussian distribution 

• Uniform range initialization: simply initialize uniformly 
within a range 

• Glorot initialization, He initialization: initialize in a 
uniform manner, where the range is specified 
according to net size 

• Latter is common/default, but read prior work carefully



Reminder: 
Mini-batching in RNNs
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Bucketing/Sorting
• If we use sentences of different lengths, too much 

padding and sorting can result in slow training
• To remedy this: sort sentences so similarly-lengthed 

sentences are in the same batch 
• But this can affect performance! (Morishita et al. 2017)



Debugging at Decoding 
Time



Training/Decoding 
Disconnects

• Usually your loss calculation and decoding will be 
implemented in different functions 

• e.g. enc_dec.py example from this class has 
calc_loss() and generate() functions  

• Like all software engineering: duplicated code is a 
source of bugs! 

• Also, usually loss calculation is minibatched, 
generation not.



Debugging Minibatching
• Debugging mini-batched loss calculation 

• Calculate loss with large batch size (e.g. 32) 

• Calculate loss for each sentence individually and 
sum them 

• The values should be the same (modulo 
numerical precision) 

• Create a unit test that tests this!



Debugging Decoding
• Your decoding code should get the same score as loss 

calculation 

• Test this: 

• Calculate loss of reference 

• Perform forced decoding, where you decode, but tell 
your model the reference word at each time step 

• The score of these two should be the same 

• Create a unit test doing this!



Beam Search
• Instead of picking one high-probability word, 

maintain several paths

• Some in reading materials, more in a later class



Debugging Search

• As you make search better, the model score should 
get better (almost all the time) 

• Run search with varying beam sizes and make sure 
you get a better overall model score with larger 
sizes 

• Create a unit test testing this!



Battling Overfitting



Symptoms of Overfitting
• Training loss converges well, but test loss diverges

• No need to look at accuracy, only loss! 
Accuracy is a symptom of a different problem.



Your Neural Net can Memorize your 
Training Data 

(Zhang et al. 2017)
• Your neural network has more parameters than training examples 

• If you randomly shuffle the training labels (there is no correlation 
b/t input and labels), it can still learn



Optimizers: Adaptive Gradient 
Methods Tend to Overfit More 

(Wilson et al. 2017)

• Adaptive gradient methods are fast, but have a 
stronger tendency to overfit on small data



Reminder: Early Stopping, 
Learning Rate Decay

• Neural nets have tons of parameters: we want to 
prevent them from over-fitting 

• We can do this by monitoring our performance on 
held-out development data and stopping training 
when it starts to get worse 

• It also sometimes helps to reduce the learning rate 
and continue training



Reminder: Dev-driven 
Learning Rate Decay

• Start w/ a high learning rate, then degrade learning 
rate when start overfitting the development set (the 
“newbob” learning rate schedule) 

• Adam w/ Learning rate decay does relatively well for 
MT (Denkowski and Neubig 2017)



Reminder: Dropout 
(Srivastava et al. 2014)

• Neural nets have lots of parameters, and are prone 
to overfitting 

• Dropout: randomly zero-out nodes in the hidden 
layer with probability p at training time only

• Because the number of nodes at training/test is 
different, scaling is necessary: 

• Standard dropout: scale by p at test time 

• Inverted dropout: scale by 1/(1-p) at training time

x

x



Recurrent Dropout 
 (Gal and Ghahramani 2015)

• Dropout can be applied to RNNs through recurrent/
variational dropout 

• Zero out particular nodes in the NN for the entire 
sentence



Mismatch b/t Optimized 
Function and Evaluation Metric



Loss Function,  
Evaluation Metric

• It is very common to optimize for maximum 
likelihood for training 

• But even though likelihood is getting better, 
accuracy can get worse 

• Remember: teacher forcing



A Stark Example 
(Koehn and Knowles 2017)

• Better search (=better model score) can result in 
worse BLEU score!

• Why? Shorter sentences have higher likelihood, better 
search finds them, but BLEU likes correct-length sentences.



Managing Loss Function/
Eval Metric Differences

• Most principled way: use structured prediction 
techniques discussed previously 

• Structured max-margin training 

• Minimum risk training 

• Reinforcement learning 

• Reward augmented maximum likelihood



A Simple Method: 
Early Stopping w/ Eval Metric
• Remember this graph: difference between number 

of iterations for best loss vs. best eval

• Why?: Over-confident predictions hurt loss. 
• Solution: perform early stopping based on accuracy



Reproducing Previous Work



Reproducing Previous Work

• Reproducing previous work is hard because 
everything is a hyper-parameter 

• If code is released, find and reduce the differences 
one by one 

• If code is not released, try your best 

• Feel free to contact authors about details, they will 
usually respond!



Questions?


