
CS11-747 Neural Networks for NLP

Debugging Neural
Networks for NLP

Graham Neubig

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

In Neural Networks,
Tuning is Paramount!

• Everything is a hyperparameter

• Network size/depth

• Small model variations

• Minibatch creation strategy

• Optimizer/learning rate

• Models are complicated and opaque, debugging can
be difficult!

Understanding Your
Problem

A Typical Situation

• You’ve implemented a nice model

• You’ve looked at the code, and it looks OK

• Your accuracy on the test set is bad

• What do I do?

Possible Causes
• Training time problems

• Lack of model capacity
• Inability to train model properly
• Training time bug

• Decoding time bugs
• Disconnect between test and decoding
• Failure of search algorithm

• Overfitting
• Mismatch between optimized function and eval

Debugging at Training Time

Identifying Training Time
Problems

• Look at the loss function calculated on the training
set

• Is the loss function going down?

• Is it going down basically to zero if you run
training long enough (e.g. 20-30 epochs)?

• If not, you have a training problem

Is My Model Too Weak?
• Your model needs to be big enough to learn

• Model size depends on task

• For language modeling, at least 512 nodes

• For natural language analysis, 128 or so may do

• Multiple layers are often better

• For long sequences (e.g. characters) may need larger
layers

Be Careful of Deep Models
• Extra layers can help, but can also hurt if you’re not careful due

to vanishing gradients

• Solutions:

Residual Connections (He et al. 2015) Highway Networks (Srivastava et al. 2015)

Trouble w/ Optimization
• If increasing model size doesn’t help, you may have

an optimization problem

• Possible causes:

• Bad optimizer

• Bad learning rate

• Bad initialization

• Bad minibatching strategy

Reminder: Optimizers
• SGD: take a step in the direction of the gradient

• SGD with Momentum: Remember gradients from past time
steps to prevent sudden changes

• Adagrad: Adapt the learning rate to reduce learning rate for
frequently updated parameters (as measured by the variance of
the gradient)

• Adam: Like Adagrad, but keeps a running average of
momentum and gradient variance

• Many others: RMSProp, Adadelta, etc.  
(See Ruder 2016 reference for more details)

Learning Rate
• Learning rate is an important parameter

• Too low: will not learn or learn vey slowly

• Too high: will learn for a while, then fluctuate and
diverge

• Common strategy: start from an initial learning rate
then gradually decrease

• Note: need a different learning rate for each optimizer!
(SGD default is 0.1, Adam 0.001)

Initialization
• Neural nets are sensitive to initialization, which results in

different sized gradients
• Standard initialization methods:

• Gaussian initialization: initialize with a zero-mean
Gaussian distribution

• Uniform range initialization: simply initialize uniformly
within a range

• Glorot initialization, He initialization: initialize in a
uniform manner, where the range is specified
according to net size

• Latter is common/default, but read prior work carefully

Reminder: 
Mini-batching in RNNs

this is an example </s>
this is another </s> </s>

Padding
Loss
Calculation

Mask

1 
1� 1 

1� 1 
1� 1 

1� 1 
0�

Take Sum

Bucketing/Sorting
• If we use sentences of different lengths, too much

padding and sorting can result in slow training
• To remedy this: sort sentences so similarly-lengthed

sentences are in the same batch
• But this can affect performance! (Morishita et al. 2017)

Debugging at Decoding
Time

Training/Decoding
Disconnects

• Usually your loss calculation and decoding will be
implemented in different functions

• e.g. enc_dec.py example from this class has
calc_loss() and generate() functions

• Like all software engineering: duplicated code is a
source of bugs!

• Also, usually loss calculation is minibatched,
generation not.

Debugging Minibatching
• Debugging mini-batched loss calculation

• Calculate loss with large batch size (e.g. 32)

• Calculate loss for each sentence individually and
sum them

• The values should be the same (modulo
numerical precision)

• Create a unit test that tests this!

Debugging Decoding
• Your decoding code should get the same score as loss

calculation

• Test this:

• Calculate loss of reference

• Perform forced decoding, where you decode, but tell
your model the reference word at each time step

• The score of these two should be the same

• Create a unit test doing this!

Beam Search
• Instead of picking one high-probability word,

maintain several paths

• Some in reading materials, more in a later class

Debugging Search

• As you make search better, the model score should
get better (almost all the time)

• Run search with varying beam sizes and make sure
you get a better overall model score with larger
sizes

• Create a unit test testing this!

Battling Overfitting

Symptoms of Overfitting
• Training loss converges well, but test loss diverges

• No need to look at accuracy, only loss! 
Accuracy is a symptom of a different problem.

Your Neural Net can Memorize your
Training Data

(Zhang et al. 2017)
• Your neural network has more parameters than training examples

• If you randomly shuffle the training labels (there is no correlation
b/t input and labels), it can still learn

Optimizers: Adaptive Gradient
Methods Tend to Overfit More

(Wilson et al. 2017)

• Adaptive gradient methods are fast, but have a
stronger tendency to overfit on small data

Reminder: Early Stopping,
Learning Rate Decay

• Neural nets have tons of parameters: we want to
prevent them from over-fitting

• We can do this by monitoring our performance on
held-out development data and stopping training
when it starts to get worse

• It also sometimes helps to reduce the learning rate
and continue training

Reminder: Dev-driven
Learning Rate Decay

• Start w/ a high learning rate, then degrade learning
rate when start overfitting the development set (the
“newbob” learning rate schedule)

• Adam w/ Learning rate decay does relatively well for
MT (Denkowski and Neubig 2017)

Reminder: Dropout
(Srivastava et al. 2014)

• Neural nets have lots of parameters, and are prone
to overfitting

• Dropout: randomly zero-out nodes in the hidden
layer with probability p at training time only

• Because the number of nodes at training/test is
different, scaling is necessary:

• Standard dropout: scale by p at test time

• Inverted dropout: scale by 1/(1-p) at training time

x

x

Recurrent Dropout
 (Gal and Ghahramani 2015)

• Dropout can be applied to RNNs through recurrent/
variational dropout

• Zero out particular nodes in the NN for the entire
sentence

Mismatch b/t Optimized
Function and Evaluation Metric

Loss Function,  
Evaluation Metric

• It is very common to optimize for maximum
likelihood for training

• But even though likelihood is getting better,
accuracy can get worse

• Remember: teacher forcing

A Stark Example
(Koehn and Knowles 2017)

• Better search (=better model score) can result in
worse BLEU score!

• Why? Shorter sentences have higher likelihood, better
search finds them, but BLEU likes correct-length sentences.

Managing Loss Function/
Eval Metric Differences

• Most principled way: use structured prediction
techniques discussed previously

• Structured max-margin training

• Minimum risk training

• Reinforcement learning

• Reward augmented maximum likelihood

A Simple Method:
Early Stopping w/ Eval Metric
• Remember this graph: difference between number

of iterations for best loss vs. best eval

• Why?: Over-confident predictions hurt loss.
• Solution: perform early stopping based on accuracy

Reproducing Previous Work

Reproducing Previous Work

• Reproducing previous work is hard because
everything is a hyper-parameter

• If code is released, find and reduce the differences
one by one

• If code is not released, try your best

• Feel free to contact authors about details, they will
usually respond!

Questions?

