CS11-747 Neural Networks for NLP

Debugging Neural
Networks for NLP

Graham Neubig

P Carnegie Mellon University
#7»’ Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

N Neural Networks,
Tuning Is Paramount!

 Everything is a hyperparameter
* Network size/depth
e Small model variations
 Minibatch creation strategy
o Optimizer/learning rate

 Models are complicated and opaqgue, debugging can
be difficult!

Understanding Your
Problem

A Typical Situation

* You've implemented a nice model
* You've looked at the code, and it looks OK
e Your accuracy on the test set is bad

- What do | do?

Possible Causes

- Training time problems
* Lack of model capacity

* |nabillity to train model properly

* Jraining time bug

- Decoding time bugs

* Disconnect between test and decoding

* Failure of search algorithm
- Overfitting
- Mismatch between optimized function and eval

Debugging at Iraining Time

|[dentitying Training Time
Problems

* ook at the loss function calculated on the training
set

* |s the loss function going down?

* |s it going down basically to zero if you run
training long enough (e.g. 20-30 epochs)?

* |t not, you have a training problem

s My Model Too Weak®

Your model needs to be big enough to learn
Model size depends on task

e For language modeling, at least 512 nodes

* For natural language analysis, 128 or so may do
Multiple layers are often better

For long sequences (e.g. characters) may need larger
layers

Be Careful of Deep Models

o Extra layers can help, but can also hurt if you're not careful due
to vanishing gradients

e Solutions:

Residual Connections (He et al. 2015) Highway Networks (Srivastava et al. 2015)

X
weight layer y=H(x,Wgu) T(x,Wt)+x-(1-T(x,Wr))
F(x) l relu x
weight layer identity

Trouble w/ Optimization

* |f increasing model size doesn’t help, you may have
an optimization problem

-+ Possible causes:
e Bad optimizer
e Bad learning rate
e Bad initialization

 Bad minibatching strategy

Reminder: Optimizers

SGD: take a step in the direction of the gradient

SGD with Momentum: Remember gradients from past time
steps to prevent sudden changes

Adagrad: Adapt the learning rate to reduce learning rate for
frequently updated parameters (as measured by the variance of
the gradient)

Adam: Like Adagrad, but keeps a running average of
momentum and gradient variance

Many others: RMSProp, Adadelta, etc.
(See Ruder 2016 reference for more details)

| earning Rate

* Learning rate is an important parameter
e Joo low: will not learn or learn vey slowly

* Joo high: will learn tor a while, then tluctuate and
diverge

« Common strategy: start from an initial learning rate
then gradually decrease

* Note: need a different learning rate tor each optimizer!
(SGD defaultis 0.1, Adam 0.001)

INnitialization

e Neural nets are sensitive to Initialization, which results In
different sized gradients

e Standard initialization methods:

 Gaussian initialization: initialize with a zero-mean
Gaussian distribution

« Uniform range initialization: simply initialize uniformly
within a range

 Glorot initialization, He initialization: initialize in a
uniform manner, where the range is specified
according to net size

e [atter is common/detault, but read prior work carefully

Reminder:
Mini-batching iIn RNNS

this Is an example </s>
this is another </s> </s>
Paddin
| oss VoL ¢ ¢ J
1 1 1 1 1
Calculation »°|1| @1 [@°] 2 500
} | | | ' Mask
J J J J J
_J _J _J _J
— = L

Take Sum

Bucketing/Sorting

e |f we use sentences of different lengths, too much
padding and sorting can result in slow training

* o remedy this: sort sentences so similarly-lengthed
sentences are In the same batch

* But this can affect performance! (Morishita et al. 2017)

§..b) 32 sentences, Adam g L) 16 sentences, Adam

g \a) b4 sentences, Adam
4 dl
€ | :
5 sl 5{ 4>
4 4 ' 2
i - it- -
2 2 5
1-. 1 1}
% v 2v 3W AN sM % IM 2 3V AW v G T 7 B T R—7 5M
A (d) B sentences. Adam a ie) 1742 words, Adam Ae (f) G4 sentences, SGD
)| : : i i : :
64 &l 6l- y
5- Sk 5l- y
q-.. at cl -4
3 3 b q - shuffle
2 2 Sre
tr
1 1 1 - srci_trq
’

‘o IV 2M 3M aM 5M 0 IM 24 3V aM &w O 0 10M 15M Zom — tra_src

Debugging at Decoding
Time

Training/Decoding
Disconnects

Usually your loss calculation and decoding will be
implemented in different functions

e.g. enc dec.py example from this class has
calc loss () and generate () functions

Like all software engineering: duplicated code is a
source of bugs!

Also, usually loss calculation is minibatched,
generation not.

Debugging Minibatching

* Debugging mini-batched loss calculation
* Calculate loss with large batch size (e.g. 32)

* Calculate loss for each sentence individually and
sum them

* The values should be the same (modulo
numerical precision)

e Create a unit test that tests this!

Debugging Decoding

* Your decoding code should get the same score as loss
calculation

e [est this:
e Calculate loss of reference

* Perform forced decoding, where you decode, but tell
your model the reference word at each time step

e The score of these two should be the same

e Create a unit test doing this!

Beam Search

* |Instead of picking one high-probability word,
maintain several paths

0 -1.27:

D-Es>

<g>

 Some Iin reading materials, more in a later class

Debugging Search

* As you make search better, the model score should
get better (almost all the time)

* Run search with varying beam sizes and make sure
you get a better overall model score with larger
sizes

* Create a unit test testing this!

Battling Overfitting

Symptoms of Overfitting

* Jraining loss converges well, but test loss diverges

Loss ACCU racy
5 -
? 0.9
0 0
0.04%
1.5 1
0.97
1.0
0.90 4
0.5 0.88 1
- Udin
0.86 - L —9— st
0 20 an 0 -0 40

 No need to look at accuracy, only loss!
Accuracy is a symptom of a different problem.

average_loss

Y
J

N
o

—_
(9]}

Your Neural Net can Memorize your

Training Data
(Zhang et al. 2017)

e Your neural network has more parameters than training examples

* |t you randomly shuffle the training labels (there is no correlation

b/t input and labels), it can still learn
4.0 T , , , 1.0
B—a frue labels =—a [nception DO b o - -
o—@ random labels |- 3.5 o—0 AlexNet 08
££ - -
w—u shuffled p'uxels € 30/|™ MLP 1x512 0.7
=== random pixels |{ < S
, o “ 0.6f
=& Caussian c 29 q’los
C @
? 2.0 = 04 m—a |nception
1.5 0.3 o—o AlexNet
o 000" 0.2 w—x MLP 1x512
1 g o—0® | : l 0.1 . . -
5 10 15 20 25 00 02 04 06 08 1.0 00 02 04 06 08 1.0
thousand steps label corruption label corruption

(a) learning curves

(b) convergence slowdown (c) generalization error growth

Optimizers: Adaptive Gradient
Methods Tend to Overfit More

(Wilson et al. 2017)

* Adaptive gradient methods are fast, but have a

stronger tendency to overfit on small data

| — SGD

HB — AdaGrad — RMSProp — Adam —— Adam (Default)]

20

20—

[
o0

o 15
< o 16 AdaGrad: 11.34+0.51
PV A e, =)
2 = " Adam\(Default): 12.30+0.16
L] = 14 ko \ Adam»9.78.10.25 |
- B V) ‘
- L B W r("u\,«,/‘fm\ W /L 3 e A:\‘ é\
E ‘s Y Wi R/ A Al
c w 12¢ :
E . T Wpsrcs, RMSProp: 9.60_0.19\
" e R et e e e]
o 7.74+0.25
o | | ‘ . B SGD: 7.65+0.14— —
0 50 100 150 200 250 0 50 100 150 200 250
Epoch Epoch

Reminder: Early Stopping,
| earning Rate Decay

 Neural nets have tons of parameters: we want to
prevent them from over-fitting

* We can do this by monitoring our performance on
held-out development data and stopping training
when It starts to get worse

e |t also sometimes helps to reduce the learning rate
and continue training

Reminder: Dev-driven
| earning Rate Decay

o Start w/ a high learning rate, then degrade learning
rate when start overfitting the development set (the
“newbob” learning rate schedule)

« Adam w/ Learning rate decay does relatively well for
MT (Denkowski and Neubig 2017)

WMT German-English

Adam
—&— SGD
15 20
Training Sentences (millions)

BLEU

14-

12

11

s WMT English-Finnish

Adam

—a— SGD
8 10 12 14
Training Sentences (millions)

BLEU

27

25

WMT Romanian-English

Adam
—&— SGD
4 6
Training Sentences (millions)

Reminder: Dropout
(Srivastava et al. 2014)

* Neural nets have lots of parameters, and are prone
to overtfitting

* Dropout: randomly zero-out nodes in the hidden
layer with probabillity p at training time only

+ Because the number of nodes at training/test is
different, scaling is necessary:

e Standard dropout: scale by p at test time

* |Inverted dropout: scale by 1/(1-p) at training time

Recurrent Dropout
(Gal and Ghahramani 2015)

* Dropout can be applied to RNNs through recurrent/
variational dropout

e /Zero out particular nodes in the NN for the entire
sentence

Yi—1 Yt Ye+1 Yt—1 Yt Y41
T 1 1
------ D------—>Q—--—--->D--—--> > [->[] > []| —
—————— -------0------->----- L]] []

T T 1]
Ti—1 Ty Ti+1 Tt—1 Ty Tt+1

(a) Naive dropout RNN (b) Variational RNN

Mismatch b/t Optimized
Function and Evaluation Metric

| 0SS Function,
Evaluation Metric

* |tis very common to optimize for maximum
ikelihood for training

* But even though likelihood is getting better,
accuracy can get worse

* Remember: teacher torcing

BLEU

A Stark Example
(Koehn and Knowles 2017)

e Better search (=better model score) can result in
worse BLEU scorel

Czech-English English-Czech
24 239)312{1—' 28 oi'g
31 = TS 245
L28" 50d0.3 23 2 “Ngo 7
S ::l (K4 o~
a0 829)
) “2%.\‘% 5 ks
29.4 3
26 21
O Unnormelized 28.5 O Unncrmalized
Normalized Xz 20 Normalizec l % 9
1 2 4 3 12 2030 50 10C 200 500 1,000 1 2 1 8 12 2030 50 100 200 5CC 1,000
Bezm Size Beam Size

 Why"? Shorter sentences have higher likelihood, better
search finds them, but BLEU likes correct-length sentences.

Managing Loss Function/
Eval Metric Differences

* Most principled way: use structured prediction
technigques discussed previously

e Structured max-margin training
* Minimum risk training
* Reinforcement learning

* Reward augmented maximum likelihood

A Simple Method:
Farly Stopping w/ Eval Metric

 Remember this graph: difference between number
of iterations for best loss vs. best eval

Loss

2.5"?

20 0.96 -
0.9% 1
1.5 1
0.97
1.0
0.90 1
0.5 1 0.85 1
L - Udn
0.86 - —9— [est
0 20 4an 0 -0 40

 Why”: Over-confident predictions hurt loss.
e Solution: perform early stopping based on accuracy

Reproducing Previous Work

Reproducing Previous Work

* Reproducing previous work Is hard because
everything is a hyper-parameter

 |f code is released, find and reduce the differences
one by one

* |f code is not released, try your best

* Feel free to contact authors about details, they will
usually respond!

Questions?

