
CS11-747 Neural Networks for NLP

Multi-task, Multi-lingual
Learning

Graham Neubig

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

Remember, Neural Nets are
Feature Extractors!

• Create a vector representation of sentences or
words for use in downstream tasks

this is an example

this is an example

• In many cases, the same representation can be
used in multiple tasks (e.g. word embeddings)

Types of Learning
• Multi-task learning is a general term for training on

multiple tasks

• Transfer learning is a type of multi-task learning
where we only really care about one of the tasks

• Domain adaptation is a type of transfer learning,
where the output is the same, but we want to
handle different topics or genres, etc.

When to Multi-task?

Plethora of Tasks in NLP
• In NLP, there are a plethora of tasks, each requiring

different varieties of data

• Only text: e.g. language modeling

• Naturally occurring data: e.g. machine
translation

• Hand-labeled data: e.g. most analysis tasks

• And each in many languages, many domains!

Rule of Thumb 1:  
Multitask to Increase Data

• Perform multi-tasking when one of your two tasks has
many fewer data

• General domain → specific domain  
(e.g. web text → medical text)

• High-resourced language → low-resourced
language 
(e.g. English → Telugu)

• Plain text → labeled text 
(e.g. LM -> parser)

Rule of Thumb 2:

• Perform multi-tasking when your tasks are related

• e.g. predicting eye gaze and summarization
(Klerke et al. 2016)

Methods for Multi-task
Learning

Standard Multi-task
Learning

• Train representations to do well on multiple tasks at
once

this is an example
Translation

Tagging
Encoder

• In general, as simple as randomly choosing minibatch from one
of multiple tasks

• Many many examples, starting with Collobert and Weston (2011)

Pre-training
• First train on one task, then train on another

this is an example TranslationEncoder

this is an example TaggingEncoder

Initialize

• Widely used in word embeddings (Turian et al. 2010)

• Also pre-training sentence representations (Dai et al.
2015)

Examples of Pre-training
Encoders

• Common to pre-train encoders for downstream
tasks, common to use:

• Language models (Dai and Le 2015)

• Translation models (McCann et al. 2017)

• Bidirectional language models (Peters et al.
2017)

Regularization for Pre-training 
(e.g. Barone et al. 2017)

• Pre-training relies on the fact that we won’t move too far from the
initialized values

• We need some form of regularization to ensure this

• Early stopping: implicit regularization — stop when the
model starts to overfit

• Explicit regularization: L2 on difference from initial
parameters 
 

• Dropout: Also implicit regularization, works pretty well

✓adapt = ✓pre + ✓diff `(✓adapt) =
X

hX,Y i2hX ,Yi

� logP (Y | X; ✓adapt) + ||✓diff ||

Selective Parameter
Adaptation

• Sometimes it is better to adapt only some of the parameters

• e.g. in cross-lingual transfer for neural MT, Zoph et al.
(2016) examine best parameters to adapt

Soft Parameter Tying
• It is also possible to share parameters loosely between

various tasks
• Parameters are regularized to be closer, but not tied in a

hard fashion (e.g. Duong et al. 2015)

Domain Adaptation

Domain Adaptation
• Basically one task, but incoming data could be

from very different distributions
news text

TranslationEncodermedical text
spoken

language

• Often have big grab-bag of all domains, and want to
tailor to a specific domain

• Two settings: supervised and unsupervised

Supervised/Unsupervised
Adaptation

• Supervised adaptation: have data in target domain

• Simple pre-training on all data, tailoring to
domain-specific data (Luong et al. 2015)

• Learning domain-specific networks/features

• Unsupervised adaptations: no data in target
domain

• Matching distributions over features

Supervised Domain Adaptation
through Feature Augmentation

• e.g. Train general-domain and domain-specific feature
extractors, then sum their results (Kim et al. 2016)

• Append a domain tag to input (Chu et al. 2016)
<news> news text
<med> medical text

Unsupervised Learning
through Feature Matching

• Adapt the latter layers of the network to match
labeled and unlabeled data using multi-kernel
mean maximum discrepancy (Long et al. 2015)  
 
 
 
 
 

• Similarly, adversarial nets (Ganin et al. 2016)

Multi-lingual Models

Multilingual Inputs
• Often as simple as training a single (large) encoder
• Optionally: use adversarial objective to help ensure that

information is shared (Chen et al. 2016)

• Quite successful in a number of tasks

Multilingual Structured Prediction/  
Multilingual Outputs

• Things are harder when predicting a sequence of
actions (parsing) or words (MT) in different languages

• One simple method: add embedding of the expected
output to your model (e.g. Tsvetkov et al. 2016)

Multi-lingual Sequence-to-
sequence Models

• It is possible to translate into several languages by
adding a tag about the target language (Johnson
et al. 2016, Ha et al. 2016)

<fr> this is an example → ceci est un exemple
<ja> this is an example → これは例です　

• Potential to allow for “zero-shot” learning:  
train on fr↔en and ja↔en, and use on fr↔ja

• Works, but not as effective as translating
fr→en→ja

Teacher-student Networks for
Multilingual Adaptation (Chen et al. 2017)

• Use a better pivoted model to “teach” a worse
zero-shot model to translate well

Multi-task Models

Types of Multi-tasking
• Most common: train on plain text or translated text,

use information for syntactic analysis task

• Also, training on multiple annotation tasks

• Other examples:

• Training with multiple annotation standards

• Training w/ different layers for different tasks

Multiple Annotation
Standards

• For analysis tasks, it is
possible to have different
annotation standards

• Solution: train models that
adjust to annotation
standards for tasks such as
semantic parsing (Peng et al.
2017), word segmentation ()

• We can even adapt to
individual annotators! (Guan
et al. 2017)

Different Layers for Different
Tasks (Hashimoto et al. 2017)

• Depending on the
complexity of the
task we might need
deeper layers

• Choose the layers
to use based on the
level of semantics
required

Questions?

