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Are These Sentences OK?
• Jane went to the store. 

• store to Jane went the. 

• Jane went store. 

• Jane goed to the store. 

• The store went to Jane. 

• The food truck went to Jane.



Calculating the Probability of 
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P (xi | x1, . . . , xi�1)
The big problem: How do we predict

?!?!



Review: Count-based 
Language Models



Count-based Language 
Models

• Count up the frequency and divide:

• Add smoothing, to deal with zero counts:
P (xi | xi�n+1, . . . , xi�1) =�PML(xi | xi�n+1, . . . , xi�1)

+ (1� �)P (xi | x1�n+2, . . . , xi�1)

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

• Modified Kneser-Ney smoothing



A Refresher on Evaluation
• Log-likelihood: 

• Per-word Log Likelihood: 

• Per-word (Cross) Entropy: 

• Perplexity: 

LL(Etest) =
X

E2Etest

logP (E)

WLL(Etest) =
1P

E2Etest
|E|

X

E2Etest

logP (E)

H(Etest) =
1P

E2Etest
|E|

X

E2Etest

� log2 P (E)

ppl(Etest) = 2H(Etest) = e�WLL(Etest)



What Can we Do w/ LMs?
• Score sentences:

• Generate sentences:

while didn’t choose end-of-sentence symbol: 
   calculate probability 
   sample a new word from the probability distribution

Jane went to the store . → high 
store to Jane went the . → low

(same as calculating loss for training)



Problems and Solutions?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ solution: class based language models

Dr. Jane Smith
• Cannot condition on context with intervening words

Dr. Gertrude Smith
→ solution: skip-gram language models

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

→ solution: cache, trigger, topic, syntactic models, etc.
for programming class he wanted to buy his own computer



An Alternative:  
Featurized Log-Linear Models



An Alternative: 
Featurized Models

• Calculate features of the context 

• Based on the features, calculate probabilities 

• Optimize feature weights using gradient descent, 
etc.



Example:
Previous words: “giving a"

a 
the 
talk 
gift 
hat 
…

Words we’re 
predicting

3.0 
2.5 
-0.2 
0.1 
1.2 
…

b=

How likely 
are they?

-6.0 
-5.1 
0.2 
0.1 
0.5 
…

w1,a=

How likely 
are they 

given prev. 
word is “a”?

-0.2 
-0.3 
1.0 
2.0 
-1.2 
…

w2,giving=

How likely 
are they 

given 2nd prev. 
word is “giving”?

-3.2 
-2.9 
1.0 
2.2 
0.6 
…

s=

Total 
score



Softmax
• Convert scores into probabilities by taking the 

exponent and normalizing (softmax)

P (x
i

| xi�1
i�n+1) =

e

s(xi|xi�1
i�n+1)

P
x̃i
e

s(x̃i|xi�1
i�n+1)

-3.2 
-2.9 
1.0 
2.2 
0.6 
…

s=

0.002 
0.003 
0.329 
0.444 
0.090 

…

p=



A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

softmax

probs

Each vector is size of output vocabulary



A Note: “Lookup”
• Lookup can be viewed as “grabbing” a single 

vector from a big matrix of word embeddings

lookup(2)

num. words
vector 
size

• Similarly, can be viewed as multiplying by a “one-
hot” vector

num. words
vector 
size

0 
0 
1
0 
0 
…

*

• Former tends to be faster



Training a Model
• Reminder: to train, we calculate a “loss 

function” (a measure of how bad our predictions 
are), and move the parameters to reduce the loss 

• The most common loss function for probabilistic 
models is “negative log likelihood”

0.002 
0.003 
0.329 
0.444 
0.090 

…

p=
If element 3  

(or zero-indexed, 2) 
is the correct answer:

-log 1.112



Parameter Update
• Back propagation allows us to calculate the 

derivative of the loss with respect to the parameters
@`

@✓

• Simple stochastic gradient descent optimizes 
parameters according to the following rule

✓  ✓ � ↵
@`

@✓



Choosing a Vocabulary



Unknown Words
• Necessity for UNK words 

• We won’t have all the words in the world in training data 

• Larger vocabularies require more memory and 
computation time 

• Common ways: 

• Frequency threshold (usually UNK <= 1) 

• Rank threshold



Evaluation and Vocabulary

• Important: the vocabulary must be the same over 
models you compare 

• Or more accurately, all models must be able to 
generate the test set (it’s OK if they can generate 
more than the test set, but not less) 

• e.g. Comparing a character-based model to a 
word-based model is fair, but not vice-versa



Let’s try it out! 
(loglin-lm.py)



What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ not solved yet 😞

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞



Beyond Linear Models



Linear Models can’t Learn 
Feature Combinations

• These can’t be expressed by linear features 
• What can we do? 

• Remember combinations as features (individual 
scores for “farmers eat”, “cows eat”)  
→ Feature space explosion! 

• Neural nets

farmers eat steak → high
farmers eat hay → low

cows eat steak → low
cows eat hay → high



Neural Language Models
• (See Bengio et al. 2004) giving a

lookup lookup

probs

softmax+

bias

=

scores

W

tanh( 
  W1*h + b1)



Where is Strength Shared?
giving a

lookup lookup

probs

softmax

tanh( 
  W1*h + b1)

+

bias

=

scores

WWord embeddings: 
Similar input words 
get similar vectors

Similar output words 
get similar rows in 

in the softmax matrix

Similar contexts get 
similar hidden states



• Cannot share strength among similar words
she bought a car

she purchased a car
she bought a bicycle

she purchased a bicycle

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞

→ solved, and similar contexts as well! 😀

What Problems are Handled?



Let’s Try it Out! 
(nn-lm.py)



Tying Input/Output 
Embeddings

• We can share parameters 
between the input and output 
embeddings (Press et al. 
2016, inter alia)

giving a

pick row pick row

probs

softmax

tanh( 
  W1*h + b1)

+

bias

=

scores

W

Want to try? Delete the input embeddings, and 
instead pick a row from the softmax matrix.



Training Tricks



Shuffling the Training Data

• Stochastic gradient methods update the 
parameters a little bit at a time 

• What if we have the sentence “I love this 
sentence so much!” at the end of the training 
data 50 times? 

• To train correctly, we should randomly shuffle the 
order at each time step



Other Optimization Options
• SGD with Momentum: Remember gradients from past 

time steps to prevent sudden changes 

• Adagrad: Adapt the learning rate to reduce learning 
rate for frequently updated parameters (as measured 
by the variance of the gradient) 

• Adam: Like Adagrad, but keeps a running average of 
momentum and gradient variance 

• Many others: RMSProp, Adadelta, etc.  
(See Ruder 2016 reference for more details)



Early Stopping, Learning 
Rate Decay

• Neural nets have tons of parameters: we want to 
prevent them from over-fitting 

• We can do this by monitoring our performance on 
held-out development data and stopping training 
when it starts to get worse 

• It also sometimes helps to reduce the learning rate 
and continue training



Which One to Use?
• Adam is usually fast to converge and stable 

• But simple SGD tends to do very will in terms of 
generalization 

• You should use learning rate decay, (e.g. on Machine 
translation results by Denkowski & Neubig 2017)



Dropout
• Neural nets have lots of parameters, and are prone 

to overfitting 

• Dropout: randomly zero-out nodes in the hidden 
layer with probability p at training time only

• Because the number of nodes at training/test is 
different, scaling is necessary: 

• Standard dropout: scale by p at test time 

• Inverted dropout: scale by 1/(1-p) at training time

x

x



Let’s Try it Out! 
(nn-lm-optim.py)



Efficiency Tricks:  
Operation Batching



Efficiency Tricks:  
Mini-batching

• On modern hardware 10 operations of size 1 is 
much slower than 1 operation of size 10 

• Minibatching combines together smaller operations 
into one big one



Minibatching



Manual Mini-batching
• Group together similar operations (e.g. loss calculations 

for a single word) and execute them all together 
• In the case of a feed-forward language model, each 

word prediction in a sentence can be batched 
• For recurrent neural nets, etc., more complicated 

• How this works depends on toolkit 
• Most toolkits have require you to add an extra 

dimension representing the batch size 
• DyNet has special minibatch operations for lookup 

and loss functions, everything else automatic



Mini-batched Code Example



Let’s Try it Out! 
(nn-lm-batch.py)



Automatic Mini-batching!

• TensorFlow Fold, DyNet Autobatching (see Neubig et al. 
2017) 

• Try it with the —dynet-autobatch command line option



Autobatching Usage
• for each minibatch: 

• for each data point in mini-batch: 

• define/add data

• sum losses

• forward (autobatch engine does magic!) 

• backward 

• update



Speed Improvements



Questions?


