
CS11-747 Neural Networks for NLP

A Simple (?) Exercise: 
Predicting the Next Word

Graham Neubig

Site
https://phontron.com/class/nn4nlp2017/

https://phontron.com/class/nn4nlp2017/

Are These Sentences OK?
• Jane went to the store.

• store to Jane went the.

• Jane went store.

• Jane goed to the store.

• The store went to Jane.

• The food truck went to Jane.

Calculating the Probability of
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

P (xi | x1, . . . , xi�1)
The big problem: How do we predict

?!?!

Review: Count-based
Language Models

Count-based Language
Models

• Count up the frequency and divide:

• Add smoothing, to deal with zero counts:
P (xi | xi�n+1, . . . , xi�1) =�PML(xi | xi�n+1, . . . , xi�1)

+ (1� �)P (xi | x1�n+2, . . . , xi�1)

PML(xi | xi�n+1, . . . , xi�1) :=
c(xi�n+1, . . . , xi)

c(xi�n+1, . . . , xi�1)

• Modified Kneser-Ney smoothing

A Refresher on Evaluation
• Log-likelihood: 

• Per-word Log Likelihood: 

• Per-word (Cross) Entropy: 

• Perplexity: 

LL(Etest) =
X

E2Etest

logP (E)

WLL(Etest) =
1P

E2Etest
|E|

X

E2Etest

logP (E)

H(Etest) =
1P

E2Etest
|E|

X

E2Etest

� log2 P (E)

ppl(Etest) = 2H(Etest) = e�WLL(Etest)

What Can we Do w/ LMs?
• Score sentences:

• Generate sentences:

while didn’t choose end-of-sentence symbol:
 calculate probability
 sample a new word from the probability distribution

Jane went to the store . → high
store to Jane went the . → low

(same as calculating loss for training)

Problems and Solutions?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ solution: class based language models

Dr. Jane Smith
• Cannot condition on context with intervening words

Dr. Gertrude Smith
→ solution: skip-gram language models

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

→ solution: cache, trigger, topic, syntactic models, etc.
for programming class he wanted to buy his own computer

An Alternative:  
Featurized Log-Linear Models

An Alternative: 
Featurized Models

• Calculate features of the context

• Based on the features, calculate probabilities

• Optimize feature weights using gradient descent,
etc.

Example:
Previous words: “giving a"

a
the
talk
gift
hat
…

Words we’re
predicting

3.0
2.5
-0.2
0.1
1.2
…

b=

How likely
are they?

-6.0
-5.1
0.2
0.1
0.5
…

w1,a=

How likely
are they

given prev.
word is “a”?

-0.2
-0.3
1.0
2.0
-1.2
…

w2,giving=

How likely
are they

given 2nd prev.
word is “giving”?

-3.2
-2.9
1.0
2.2
0.6
…

s=

Total
score

Softmax
• Convert scores into probabilities by taking the

exponent and normalizing (softmax)

P (x
i

| xi�1
i�n+1) =

e

s(xi|xi�1
i�n+1)

P
x̃i
e

s(x̃i|xi�1
i�n+1)

-3.2
-2.9
1.0
2.2
0.6
…

s=

0.002
0.003
0.329
0.444
0.090

…

p=

A Computation Graph View
giving a

lookup2 lookup1

+ +

bias

=

scores

softmax

probs

Each vector is size of output vocabulary

A Note: “Lookup”
• Lookup can be viewed as “grabbing” a single

vector from a big matrix of word embeddings

lookup(2)

num. words
vector
size

• Similarly, can be viewed as multiplying by a “one-
hot” vector

num. words
vector
size

0
0
1
0
0
…

*

• Former tends to be faster

Training a Model
• Reminder: to train, we calculate a “loss

function” (a measure of how bad our predictions
are), and move the parameters to reduce the loss

• The most common loss function for probabilistic
models is “negative log likelihood”

0.002
0.003
0.329
0.444
0.090

…

p=
If element 3

(or zero-indexed, 2)
is the correct answer:

-log 1.112

Parameter Update
• Back propagation allows us to calculate the

derivative of the loss with respect to the parameters
@`

@✓

• Simple stochastic gradient descent optimizes
parameters according to the following rule

✓ ✓ � ↵
@`

@✓

Choosing a Vocabulary

Unknown Words
• Necessity for UNK words

• We won’t have all the words in the world in training data

• Larger vocabularies require more memory and
computation time

• Common ways:

• Frequency threshold (usually UNK <= 1)

• Rank threshold

Evaluation and Vocabulary

• Important: the vocabulary must be the same over
models you compare

• Or more accurately, all models must be able to
generate the test set (it’s OK if they can generate
more than the test set, but not less)

• e.g. Comparing a character-based model to a
word-based model is fair, but not vice-versa

Let’s try it out!
(loglin-lm.py)

What Problems are Handled?
• Cannot share strength among similar words

she bought a car
she purchased a car

she bought a bicycle
she purchased a bicycle

→ not solved yet 😞

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞

Beyond Linear Models

Linear Models can’t Learn
Feature Combinations

• These can’t be expressed by linear features
• What can we do?

• Remember combinations as features (individual
scores for “farmers eat”, “cows eat”)  
→ Feature space explosion!

• Neural nets

farmers eat steak → high
farmers eat hay → low

cows eat steak → low
cows eat hay → high

Neural Language Models
• (See Bengio et al. 2004) giving a

lookup lookup

probs

softmax+

bias

=

scores

W

tanh( 
 W1*h + b1)

Where is Strength Shared?
giving a

lookup lookup

probs

softmax

tanh( 
 W1*h + b1)

+

bias

=

scores

WWord embeddings:
Similar input words
get similar vectors

Similar output words
get similar rows in

in the softmax matrix

Similar contexts get
similar hidden states

• Cannot share strength among similar words
she bought a car

she purchased a car
she bought a bicycle

she purchased a bicycle

• Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

• Cannot handle long-distance dependencies
for tennis class he wanted to buy his own racquet

for programming class he wanted to buy his own computer

→ solved! 😀

→ not solved yet 😞

→ solved, and similar contexts as well! 😀

What Problems are Handled?

Let’s Try it Out!
(nn-lm.py)

Tying Input/Output
Embeddings

• We can share parameters
between the input and output
embeddings (Press et al.
2016, inter alia)

giving a

pick row pick row

probs

softmax

tanh( 
 W1*h + b1)

+

bias

=

scores

W

Want to try? Delete the input embeddings, and
instead pick a row from the softmax matrix.

Training Tricks

Shuffling the Training Data

• Stochastic gradient methods update the
parameters a little bit at a time

• What if we have the sentence “I love this
sentence so much!” at the end of the training
data 50 times?

• To train correctly, we should randomly shuffle the
order at each time step

Other Optimization Options
• SGD with Momentum: Remember gradients from past

time steps to prevent sudden changes

• Adagrad: Adapt the learning rate to reduce learning
rate for frequently updated parameters (as measured
by the variance of the gradient)

• Adam: Like Adagrad, but keeps a running average of
momentum and gradient variance

• Many others: RMSProp, Adadelta, etc.  
(See Ruder 2016 reference for more details)

Early Stopping, Learning
Rate Decay

• Neural nets have tons of parameters: we want to
prevent them from over-fitting

• We can do this by monitoring our performance on
held-out development data and stopping training
when it starts to get worse

• It also sometimes helps to reduce the learning rate
and continue training

Which One to Use?
• Adam is usually fast to converge and stable

• But simple SGD tends to do very will in terms of
generalization

• You should use learning rate decay, (e.g. on Machine
translation results by Denkowski & Neubig 2017)

Dropout
• Neural nets have lots of parameters, and are prone

to overfitting

• Dropout: randomly zero-out nodes in the hidden
layer with probability p at training time only

• Because the number of nodes at training/test is
different, scaling is necessary:

• Standard dropout: scale by p at test time

• Inverted dropout: scale by 1/(1-p) at training time

x

x

Let’s Try it Out!
(nn-lm-optim.py)

Efficiency Tricks:  
Operation Batching

Efficiency Tricks:  
Mini-batching

• On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

• Minibatching combines together smaller operations
into one big one

Minibatching

Manual Mini-batching
• Group together similar operations (e.g. loss calculations

for a single word) and execute them all together
• In the case of a feed-forward language model, each

word prediction in a sentence can be batched
• For recurrent neural nets, etc., more complicated

• How this works depends on toolkit
• Most toolkits have require you to add an extra

dimension representing the batch size
• DyNet has special minibatch operations for lookup

and loss functions, everything else automatic

Mini-batched Code Example

Let’s Try it Out!
(nn-lm-batch.py)

Automatic Mini-batching!

• TensorFlow Fold, DyNet Autobatching (see Neubig et al.
2017)

• Try it with the —dynet-autobatch command line option

Autobatching Usage
• for each minibatch:

• for each data point in mini-batch:

• define/add data

• sum losses

• forward (autobatch engine does magic!)

• backward

• update

Speed Improvements

Questions?

