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Language Models
• Language models are generative models of text

s ~ P(x)

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

“The Malfoys!” said Hermione. 

Harry was watching him. He looked like Madame Maxime. When she strode 
up the wrong staircase to visit himself.  

“I’m afraid I’ve definitely been suspended from power, no chance — indeed?” 
said Snape. He put his head back behind them and read groups as they crossed 
a corner and fluttered down onto their ink lamp, and picked up his spoon. The 
doorbell rang. It was a lot cleaner down in London.



Conditioned Language Models
• Not just generate text, generate text according to 

some specification

Input X Output Y (Text)

English Japanese

Task

Translation
Structured Data NL Description NL Generation

Document Short Description Summarization
Utterance Response Response Generation

Image Text Image Captioning
Speech Transcript Speech Recognition



Formulation and Modeling



Calculating the Probability of 
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context



Conditional Language 
Models

P (Y |X) =
JY

j=1

P (yj | X, y1, . . . , yj�1)

Added Context!



(One Type of) Language Model 
(Mikolov et al. 2011)
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(One Type of) Conditional Language Model 
(Sutskever et al. 2014)

I hate this movie

kono eiga ga kirai

I hate this movie

Encoder

Decoder



How to Pass Hidden State?
• Initialize decoder w/ encoder (Sutskever et al. 2014)

encoder decoder

• Transform (can be different dimensions)

encoder decodertransform

• Input at every time step (Kalchbrenner & Blunsom 2013)

encoder

decoder decoder decoder



Methods of Generation



The Generation Problem
• We have a model of P(Y|X), how do we use it to 

generate a sentence? 

• Two methods: 

• Sampling: Try to generate a random sentence 
according to the probability distribution. 

• Argmax: Try to generate the sentence with the 
highest probability.



Ancestral Sampling

• Randomly generate words one-by-one.  
 
 
 

• An exact method for sampling from P(X), no further 
work needed.

while yj-1 != “</s>”: 
  yj ~ P(yj | X, y1, …, yj-1)



Greedy Search
• One by one, pick the single highest-probability word

• Not exact, real problems:

• Will often generate the “easy” words first 

• Will prefer multiple common words to one rare word

while yj-1 != “</s>”: 
  yj = argmax P(yj | X, y1, …, yj-1)



Beam Search
• Instead of picking one high-probability word, 

maintain several paths

• Some in reading materials, more in a later class



Let’s Try it Out! 
enc_dec.py



Model Ensembling



Ensembling

• Why? 

• Multiple models make somewhat uncorrelated errors 

• Models tend to be more uncertain when they are about to make errors 

• Smooths over idiosyncrasies of the model

LSTM1

<s>

predict1

I

LSTM2

<s>

predict2

• Combine predictions from multiple models



Linear Interpolation
• Take a weighted average of the M model probabilities

P (yj | X, y1, . . . , yj�1) =

MX

m=1

Pm(yj | X, y1, . . . , yj�1)P (m | X, y1, . . . , yj�1)

• Second term often set to uniform distribution 1/M

Probability according 
to model m

Probability of 
model m



Log-linear Interpolation
• Weighted combination of log probabilities, normalize

• Interpolation coefficient often set to uniform distribution 1/M

Interpolation coefficient 
for model m

Log probability 
of model m

P (yj | X, y1, . . . , yj�1) =

softmax

 
MX

m=1

�m(X, y1, . . . , yj�1) logPm(yj | X, y1, . . . , yj�1)

!

Normalize



Linear or Log Linear?
• Think of it in logic! 
• Linear: “Logical OR” 

• the interpolated model likes any choice that a model gives a 
high probability 

• use models with models that capture different traits 
• necessary when any model can assign zero probability 

• Log Linear: “Logical AND” 
• interpolated model only likes choices where all models agree 
• use when you want to restrict possible answers



Parameter Averaging
• Problem: Ensembling means we have to use M 

models at test time, increasing our time/memory 
complexity 

• Parameter averaging is a cheap way to get some 
good effects of ensembling 

• Basically, write out models several times near the 
end of training, and take the average of parameters



Ensemble Distillation 
(e.g. Kim et al. 2016)

• Problem: parameter averaging only works for models 
within the same run 

• Knowledge distillation trains a model to copy the 
ensemble 

• Specifically, it tries to match the description over 
predicted words 

• Why? We want the model to make the same mistakes as 
an ensemble 

• Shown to increase accuracy notably



Stacking

• What if we have two very different models where 
prediction of outputs is done in very different ways? 

• e.g. a phrase-based translation model and a  

• Stacking uses the output of one system in 
calculating features for another system



How do we Evaluate?



Basic Evaluation Paradigm

• Use parallel test set 

• Use system to generate translations 

• Compare target translations w/ reference



Human Evaluation
• Ask a human to do evaluation

• Final goal, but slow, expensive, and sometimes inconsistent



BLEU
• Works by comparing n-gram overlap w/ reference

• Pros: Easy to use, good for measuring system improvement 

• Cons: Often doesn’t match human eval, bad for comparing 
very different systems



METEOR
• Like BLEU in overall principle, with many other 

tricks: consider paraphrases, reordering, and 
function word/content word difference 

• Pros: Generally significantly better than BLEU, 
esp. for high-resource languages 

• Cons: Requires extra resources for new languages 
(although these can be made automatically), and 
more complicated



Perplexity
• Calculate the perplexity of the words in the held-out 

set without doing generation 

• Pros: Naturally solves multiple-reference problem! 

• Cons: Doesn’t consider decoding or actually 
generating output. 

• May be reasonable for problems with lots of 
ambiguity.



A Contrastive Note: 
Evaluating Unconditioned Generation
• How do we evaluate unconditioned generation 

models? 

• Not clear! We could do human evaluation. 

• But a model that memorizes the corpus will be too 
good. 

• Perhaps held-out perplexity is as good as we can do? 

• Perhaps we should use conditioned generation.



Case Studies in Conditional 
Language Modeling



From Structured Data 
(e.g. Wen et al 2015)

• When you say “Natural Language Generation” to 
an old-school NLPer, it means this



Still a Difficult Problem!
• e.g. "Challenges in data-to-document generation" (Wiseman et al. 2017)



From Input + Labels 
(e.g. Zhou and Neubig 2017)

• For example, word + morphological tags -> inflected word

• Other options: politeness/gender in translation, etc.



From Speaker/Document Traits 
(Hoang et al. 2016)

• e.g. TED talk description -> TED talk 
• Encode title, description, keywords, author embedding 
• Various encoding methods: BOW, CNN, RNN 
• Various integration methods: in recurrent layer or 

softmax layer



From Lists of Traits 
(Kiddon et al. 2016)

• Name of a recipe + ingredients -> recipe 

• "Neural Checklist Model" that tells when a particular 
item in the list has been generated



From Images 
(e.g. Karpathy et al. 2015)

• Input is image features, output is text

• Standard to use CNN-based image encoders 

• Often pre-trained on large databases such as ImageNet



From Word Embeddings 
(Noraset et al. 2017)

• Baseline: standard sequence-to-sequence model 

• Additional information about the affixes and hypernyms 



Questions?


