
CS11-747 Neural Networks for NLP

Conditioned Generation
Graham Neubig

Site
https://phontron.com/class/nn4nlp2018/

https://phontron.com/class/nn4nlp2018/

Language Models
• Language models are generative models of text

s ~ P(x)

Text Credit: Max Deutsch (https://medium.com/deep-writing/)

“The Malfoys!” said Hermione.

Harry was watching him. He looked like Madame Maxime. When she strode
up the wrong staircase to visit himself.  

“I’m afraid I’ve definitely been suspended from power, no chance — indeed?”
said Snape. He put his head back behind them and read groups as they crossed
a corner and fluttered down onto their ink lamp, and picked up his spoon. The
doorbell rang. It was a lot cleaner down in London.

Conditioned Language Models
• Not just generate text, generate text according to

some specification

Input X Output Y (Text)

English Japanese

Task

Translation
Structured Data NL Description NL Generation

Document Short Description Summarization
Utterance Response Response Generation

Image Text Image Captioning
Speech Transcript Speech Recognition

Formulation and Modeling

Calculating the Probability of
a Sentence

P (X) =
IY

i=1

P (xi | x1, . . . , xi�1)

Next Word Context

Conditional Language
Models

P (Y |X) =
JY

j=1

P (yj | X, y1, . . . , yj�1)

Added Context!

(One Type of) Language Model
(Mikolov et al. 2011)

LSTM LSTM LSTM LSTM

moviethishateI

predict

hate

predict

this

predict

movie

predict

</s>

LSTM

<s>

predict

I

LSTM LSTM LSTM LSTM LSTM

</s>

LSTM LSTM LSTM LSTM

argmax argmax argmax argmax

</s>
argmax

(One Type of) Conditional Language Model
(Sutskever et al. 2014)

I hate this movie

kono eiga ga kirai

I hate this movie

Encoder

Decoder

How to Pass Hidden State?
• Initialize decoder w/ encoder (Sutskever et al. 2014)

encoder decoder

• Transform (can be different dimensions)

encoder decodertransform

• Input at every time step (Kalchbrenner & Blunsom 2013)

encoder

decoder decoder decoder

Methods of Generation

The Generation Problem
• We have a model of P(Y|X), how do we use it to

generate a sentence?

• Two methods:

• Sampling: Try to generate a random sentence
according to the probability distribution.

• Argmax: Try to generate the sentence with the
highest probability.

Ancestral Sampling

• Randomly generate words one-by-one.  
 
 
 

• An exact method for sampling from P(X), no further
work needed.

while yj-1 != “</s>”:
 yj ~ P(yj | X, y1, …, yj-1)

Greedy Search
• One by one, pick the single highest-probability word

• Not exact, real problems:

• Will often generate the “easy” words first

• Will prefer multiple common words to one rare word

while yj-1 != “</s>”:
 yj = argmax P(yj | X, y1, …, yj-1)

Beam Search
• Instead of picking one high-probability word,

maintain several paths

• Some in reading materials, more in a later class

Let’s Try it Out!
enc_dec.py

Model Ensembling

Ensembling

• Why?

• Multiple models make somewhat uncorrelated errors

• Models tend to be more uncertain when they are about to make errors

• Smooths over idiosyncrasies of the model

LSTM1

<s>

predict1

I

LSTM2

<s>

predict2

• Combine predictions from multiple models

Linear Interpolation
• Take a weighted average of the M model probabilities

P (yj | X, y1, . . . , yj�1) =

MX

m=1

Pm(yj | X, y1, . . . , yj�1)P (m | X, y1, . . . , yj�1)

• Second term often set to uniform distribution 1/M

Probability according
to model m

Probability of
model m

Log-linear Interpolation
• Weighted combination of log probabilities, normalize

• Interpolation coefficient often set to uniform distribution 1/M

Interpolation coefficient
for model m

Log probability
of model m

P (yj | X, y1, . . . , yj�1) =

softmax

MX

m=1

�m(X, y1, . . . , yj�1) logPm(yj | X, y1, . . . , yj�1)

!

Normalize

Linear or Log Linear?
• Think of it in logic!
• Linear: “Logical OR”

• the interpolated model likes any choice that a model gives a
high probability

• use models with models that capture different traits
• necessary when any model can assign zero probability

• Log Linear: “Logical AND”
• interpolated model only likes choices where all models agree
• use when you want to restrict possible answers

Parameter Averaging
• Problem: Ensembling means we have to use M

models at test time, increasing our time/memory
complexity

• Parameter averaging is a cheap way to get some
good effects of ensembling

• Basically, write out models several times near the
end of training, and take the average of parameters

Ensemble Distillation
(e.g. Kim et al. 2016)

• Problem: parameter averaging only works for models
within the same run

• Knowledge distillation trains a model to copy the
ensemble

• Specifically, it tries to match the description over
predicted words

• Why? We want the model to make the same mistakes as
an ensemble

• Shown to increase accuracy notably

Stacking

• What if we have two very different models where
prediction of outputs is done in very different ways?

• e.g. a phrase-based translation model and a

• Stacking uses the output of one system in
calculating features for another system

How do we Evaluate?

Basic Evaluation Paradigm

• Use parallel test set

• Use system to generate translations

• Compare target translations w/ reference

Human Evaluation
• Ask a human to do evaluation

• Final goal, but slow, expensive, and sometimes inconsistent

BLEU
• Works by comparing n-gram overlap w/ reference

• Pros: Easy to use, good for measuring system improvement

• Cons: Often doesn’t match human eval, bad for comparing
very different systems

METEOR
• Like BLEU in overall principle, with many other

tricks: consider paraphrases, reordering, and
function word/content word difference

• Pros: Generally significantly better than BLEU,
esp. for high-resource languages

• Cons: Requires extra resources for new languages
(although these can be made automatically), and
more complicated

Perplexity
• Calculate the perplexity of the words in the held-out

set without doing generation

• Pros: Naturally solves multiple-reference problem!

• Cons: Doesn’t consider decoding or actually
generating output.

• May be reasonable for problems with lots of
ambiguity.

A Contrastive Note:
Evaluating Unconditioned Generation
• How do we evaluate unconditioned generation

models?

• Not clear! We could do human evaluation.

• But a model that memorizes the corpus will be too
good.

• Perhaps held-out perplexity is as good as we can do?

• Perhaps we should use conditioned generation.

Case Studies in Conditional
Language Modeling

From Structured Data
(e.g. Wen et al 2015)

• When you say “Natural Language Generation” to
an old-school NLPer, it means this

Still a Difficult Problem!
• e.g. "Challenges in data-to-document generation" (Wiseman et al. 2017)

From Input + Labels
(e.g. Zhou and Neubig 2017)

• For example, word + morphological tags -> inflected word

• Other options: politeness/gender in translation, etc.

From Speaker/Document Traits
(Hoang et al. 2016)

• e.g. TED talk description -> TED talk
• Encode title, description, keywords, author embedding
• Various encoding methods: BOW, CNN, RNN
• Various integration methods: in recurrent layer or

softmax layer

From Lists of Traits
(Kiddon et al. 2016)

• Name of a recipe + ingredients -> recipe

• "Neural Checklist Model" that tells when a particular
item in the list has been generated

From Images
(e.g. Karpathy et al. 2015)

• Input is image features, output is text

• Standard to use CNN-based image encoders

• Often pre-trained on large databases such as ImageNet

From Word Embeddings
(Noraset et al. 2017)

• Baseline: standard sequence-to-sequence model

• Additional information about the affixes and hypernyms

Questions?

