CS11-747 Neural Networks for NLP Adversarial Methods

Zihang Dai & Qizhe Xie

Carnegie Mellon University

Language Technologies Institute

Site https://phontron.com/class/nn4nlp2018/

Overview

- Generative Models (historical context)
- Generative Adversarial Networks (GANs)
- Generalized Adversarial Methods
- Applications in Text

Generative Models

- Model a data distribution P(X) or a conditional one P(X|Y)
- Typical approaches in deep generative models
 - Auto-Regressive Model: $P(X) = \prod_t P(X_t \mid X_{\le t})$
 - e.g. RNN language model (RNNLM)
 - Latent Variable Model: $P(X) = \sum_{Z} P(X \mid Z) P(Z)$
 - e.g. Variational Auto-Encoder (VAE) next lecture

What do we want from generative models?

- A "perfect" generative model
 - Evaluate likelihood: P(x)
 - e.g. Perplexity in language modeling
 - Generate samples: x ~ P(X)
 - e.g. Generate a sentence randomly from P(X) or conditioned on some other information using P(X|Y)
 - Infer latent attributes: P(Z|X)
 - e.g. Infer the "topic" of a sentence in topic models

No Generative Model is Perfect (so far)

	Auto-Reg. (PixeICNN)	RBM	VAE	GAN
Likelihood	******	***************************************	***************************************	
Generation (image)		★	\longrightarrow	******
Inference		***************************************	***	***************************************

- Mostly rely on MLE (Lower bound) based training
- GANs are particularly good at generating continuous samples

VAE vs. GAN

Over-emphasis of common outputs, fuzziness

Real VAE GAN

Image Credit: Lotter et al. 2015

Auto-Reg. vs. GAN

Local details vs. Global structure

Real Auto-Reg. GAN

Generative Adversarial Networks

Basic Paradigm

- Two players: generator and discriminator
 - Discriminator: given an image, try to tell whether it is real or not → P(image is real)
 - **Generator:** try to generate an image that fools the discriminator into answering "real"
- Desired result at convergence
 - Generator: generate perfect image
 - Discriminator: cannot tell the difference

Training Method

In Equations

Discriminator loss function:

$$\ell_D(\theta_D, \theta_G) = -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim P_{data}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log(1 - D(G(\boldsymbol{z})))$$

Predict real for real data

Predict fake for fake data

P(fake) = 1 - P(real)

- Generator loss function:
 - Make generate data "less fake" → Zero sum loss:

$$\ell_G(\theta_D, \theta_G) = -\ell_D(\theta_D, \theta_G)$$

Make generate data "more real" → Heuristic non-saturating loss:

$$\ell_G(\theta_D, \theta_G) = -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log D(G(\boldsymbol{z}))$$

• Latter gives better gradients when discriminator accurate

In Pseudo-Code

- x_{real} ~ Training data
- $z \sim P(Z)$

 \rightarrow Normal(0, 1) or Uniform(-1, 1)

- $X_{fake} = \mathbf{G}(Z)$
- $y_{real} = \mathbf{D}(x_{real})$

 \rightarrow P(x_{real} is real)

• $y_{fake} = \mathbf{D}(x_{fake})$

- \rightarrow P(x_{fake} is real)
- Train **D**: min_D log y_{real} log (1 y_{fake})
- Train **G**: min_G log $y_{fake} \rightarrow$ non-saturating loss

Why is GAN good?

- Discriminator is a "learned metric"
 parameterized by powerful neural networks
- Can easily pick up any kind of discrepancy, e.g. blurriness, global inconsistency
- Generator has fine-grained (gradient) signals to inform it what and how to improve

Problems in GAN Training

- GANs are great, but training is notoriously difficult
- Known problems
 - Convergence & Stability:
 - WGAN (Arjovsky et al., 2017)
 - WGAN-GP (Gulrajani et al., 2017)
 - Gradient-Based Regularization (Roth et al., 2017)
 - Mode collapse/dropping:
 - Mini-batch Discrimination (Salimans et al. 2016)
 - Unrolled GAN (Metz et al. 2016)
 - Overconfident discriminator:
 - One-side label smooth (Salimans et al. 2016)

Generalized Adversarial Methods

Implicit Distribution

Process

- [Step1] $Z \sim P(Z)$, P(Z) can be any distribution
- [Step2] X = F(Z), F is a **deterministic** function

Result

- X is a random variable with an implicit distribution
 P(X), which decided by both P(Z) and F
- The process can produce any complicated distribution P(X) with a reasonable P(Z) and a powerful enough F

Image Credit: He et al. 2018

Distributional Matching via Samples

- Generator → Any model that produces "samples"
- Samples → Anything with an underlying distribution
 - hidden features, parameters, images/text
 - the distribution is often implicit
- Discriminator → Identify the <u>distributional differences</u>
 - as a learned metric
 - by checking real & fake samples only

Learning Domain-invariant Representations (Ganin et al. 2016)

Learn features that cannot be distinguished by domain

 Interesting application to synthetically generated or stale data (Kim et al. 2017)

Applying GANs to Text

Adversarial Training Methods

Generative adversarial networks

$$x \longrightarrow h \longrightarrow P(y) \longrightarrow y$$

Adversary!

Adversarial training over features

$$x \longrightarrow h \longrightarrow P(y) \longrightarrow y$$
Adversary!

Adversarial training over Softmax results

$$x \longrightarrow h \longrightarrow P(y) \longrightarrow y$$

^ Adversary!

Applying GANs to Text

Adversarial Training over generated sentences (GAN)

Discriminators for Sequences

- Decide whether a particular generated output is true or not
- Commonly use CNNs as discriminators

Problem! Can't Backprop through Discrete Variables

Solution: Use Learning Methods for Discrete Latent Variables

- Policy gradient reinforcement learning methods (e.g. Yu et al. 2016)
- Reparameterization trick for latent variables using Straight-through Gumbel softmax (Gu et al. 2017)

Stabilization Trick: Assigning Reward to Specific Actions

- Getting a reward at the end of the sentence gives a credit assignment problem, leading to a high variance
- Solution: assign rewards for partial sequences (Yu et al. 2016, Li et al. 2017)

D(this)
D(this looks)

D(this looks do)

Stabilization Tricks: Performing Multiple Rollouts

- Instability is a severe problem
- High variance can be helped somewhat by doing multiple rollouts (Yu et al. 2016)
- Computationally heavy

Applications

- GANs for Language Generation (Yu et al. 2017)
- GANs for MT (Yang et al. 2017, Wu et al. 2017, Gu et al. 2017)
- GANs for Dialogue Generation (Li et al. 2016)

Strengths and Weaknesses

- Matching the distribution of generated sentences:
 - Pros: Unbiased (optimizing our final goal of generating natural sentences)
 - Cons: High variance (unstable), Sample inefficient (slow)
- Alternatives: Matching the distributions of features / Softmax results
 - Pros: Low variance, sample efficient
 - Cons: Biased (optimizing a surrogate objective)
 - Currently more widely used

Applying GANs to Text

Adversarial Training over features

Learning Languageinvariant Representations

 Chen et al. (2016) learn language-invariant representations for text classification

Also on multi-lingual machine translation (Xie et al. 2017)

Professor Forcing (Lamb et al. 2016)

- Tackles the exposure bias problem
 - Encourage the dynamics of the model to be the same at training time and inference time

Unsupervised Style Transfer for Text (Shen et al. 2017)

- Task: transfer sentences with one style to another style
 - Decipherment: Translate ciphered sentences to natural sentences (A simpler case of unsupervised MT)
 - Transfer sentences with positive sentiment to negative sentiment.
 - Word reordering
- Impressive performance on decipherment

Unsupervised Machine Translation

(Lample et al. 2017, Artetxe et al. 2017)

- Methods:
 - Cycle consistency (dual learning) (He et al. 2016, Zhu et al. 2017)
 - Employing denoising auto-encoder to refine translated sentence
- Performance on a par with supervised methods using 100k samples

Adversarial Multi-task Learning (Liu et al. 2017)

 Basic idea: want some features in a shared space across tasks, others separate

 Method: adversarial discriminator on shared features, orthogonality constraints on separate features

Applying GANs to Text

Adversarial Training over Softmax Results

Adversarial Generation of Natural Language (Rajeswar et al. 2017)

- Unconditional generation of text with a fixed length
- Generator takes noise Z of shape [T x d] as input, and outputs the distribution P(X) of shape [T x V]
- Discriminator takes the P(X) of a fake generation or the one-hot representation of a real sample
- WGAN with GP regularization is crucial for training (Arjovsky et al., 2017, Gulrajani et al. 2017)
- Criticism: https://goo.gl/uNZtHm

Controlled Text Generation (Hu et al. 2017)

- Separate the latent code of sentiment / tenses from the whole representation
- Propose to use the Softmax information
- Actually no adversarial training. Use cycle consistency to achieve latent code separation
- Great performance on modifying the sentiment / tenses of the sentence

Questions?