
CS11-747 Neural Networks for NLP

Models of Words
Graham Neubig

Site
https://phontron.com/class/nn4nlp2019/

https://phontron.com/class/nn4nlp2019/

What do we want to know
about words?

• Are they the same part of speech?

• Do they have the same conjugation?

• Do these two words mean the same thing?

• Do they have some semantic relation (is-a, part-of,
went-to-school-at)?

A Manual Attempt:
WordNet

• WordNet is a large database of words including parts of
speech, semantic relations  
 
 
 
 
 

• Major effort to develop, projects in many languages.

• But can we do something similar, more complete, and
without the effort?

Image Credit: NLTK

An Answer (?):
Word Embeddings!

• A continuous vector representation of words 
 
 

• Within the word embedding, these features of syntax and
semantics may be included

• Element 1 might be more positive for nouns

• Element 2 might be positive for animate objects

• Element 3 might have no intuitive meaning whatsoever

Word Embeddings are Cool!
(An Obligatory Slide)

• e.g. king-man+woman = queen (Mikolov et al.
2013)

• “What is the female equivalent of king?” is not
easily accessible in many traditional resources

How to Train Word
Embeddings?

• Initialize randomly, train jointly with the task

• Pre-train on a supervised task (e.g. POS tagging)
and test on another, (e.g. parsing)

• Pre-train on an unsupervised task (e.g.
word2vec)

Unsupervised Pre-training of Word
Embeddings

(Summary of Goldberg 10.4)

Distributional vs. Distributed
Representations

• Distributional representations
• Words are similar if they appear in similar contexts

(Harris 1954); distribution of words indicative of usage
• In contrast: non-distributional representations created

from lexical resources such as WordNet, etc.

• Distributed representations
• Basically, something is represented by a vector of

values, each representing activations
• In contrast: local representations, where represented by

a discrete symbol (one-hot vector)

Distributional Representations
(see Goldberg 10.4.1)

• Words appear in a context

(try it yourself w/ kwic.py)

Count-based Methods
• Create a word-context count matrix

• Count the number of co-occurrences of word/
context, with rows as word, columns as contexts

• Maybe weight with pointwise mutual information

• Maybe reduce dimensions using SVD

• Measure their closeness using cosine similarity
(or generalized Jaccard similarity, others)

Prediction-basd Methods
(See Goldberg 10.4.2)

• Instead, try to predict the words within a neural
network

• Word embeddings are the byproduct

Word Embeddings from
Language Models

giving a

lookup lookup

probs

softmax+

bias

=

scores

W

tanh( 
 W1*h + b1)

Context Window Methods
• If we don’t need to calculate the probability of the

sentence, other methods possible!

• These can move closer to the contexts used in
count-based methods

• These drive word2vec, etc.

CBOW
(Mikolov et al. 2013)

• Predict word based on sum of surrounding embeddings

lookup lookup lookup lookup

giving a at the***

++ +

probs

softmax=

scores

W

= talk

loss

Let’s Try it Out!
wordemb-cbow.py

Skip-gram
(Mikolov et al. 2013)

• Predict each word in the context given the word

lookup

talk

W =

giving

loss

a

at

the

Let’s Try it Out!
wordemb-skipgram.py

Count-based and
Prediction-based Methods

• Strong connection between count-based methods
and prediction-based methods (Levy and Goldberg
2014)

• Skip-gram objective is equivalent to matrix
factorization with PMI and discount for number of
samples k (sampling covered next time)

Mw,c = PMI(w, c)� log(k)

GloVe (Pennington et al. 2014)
• A matrix factorization approach motivated by ratios

of P(word | context) probabilities

• Nice derivation from start to final loss function that
satisfies desiderata

Why?

Start: Meaningful in linear space
(differences, dot products)

Word/context invariance
Robust to low-freq. ctxts.

End:

What Contexts?
• Context has a large effect!

• Small context window: more syntax-based
embeddings

• Large context window: more semantics-based,
topical embeddings

• Context based on syntax: more functional, w/
words with same inflection grouped

Evaluating Embeddings

Types of Evaluation
• Intrinsic vs. Extrinsic

• Intrinsic: How good is it based on its features?

• Extrinsic: How useful is it downstream?

• Qualitative vs. Quantitative

• Qualitative: Examine the characteristics of
examples.

• Quantitative: Calculate statistics

Visualization of Embeddings
• Reduce high-dimensional embeddings into 2/3D

for visualization (e.g. Mikolov et al. 2013)

Non-linear Projection
• Non-linear projections group things that are close in high-

dimensional space

• e.g. SNE/t-SNE (van der Maaten and Hinton 2008) group things
that give each other a high probability according to a Gaussian

(Image credit: Derksen 2016)

PCA t-SNE

Let’s Try it Out!
wordemb-vis-tsne.py

t-SNE Visualization can be
Misleading! (Wattenberg et al. 2016)

• Settings matter

•  
 
 

• Linear correlations cannot be interpreted

Intrinsic Evaluation of Embeddings
(categorization from Schnabel et al 2015)

• Relatedness: The correlation btw. embedding
cosine similarity and human eval of similarity?

• Analogy: Find x for “a is to b, as x is to y”.

• Categorization: Create clusters based on the
embeddings, and measure purity of clusters.

• Selectional Preference: Determine whether a
noun is a typical argument of a verb.

Extrinsic Evaluation:
Using Word Embeddings in Systems

• Initialize w/ the embeddings

• Concatenate pre-trained embeddings with learned
embeddings

• Latter is more expressive, but leads to increase in
model parameters

How Do I Choose
Embeddings?

• No one-size-fits-all embedding (Schnabel et al 2015)

• Be aware, and use the best one for the task

When are Pre-trained
Embeddings Useful?

• Basically, when training data is insufficient

• Very useful: tagging, parsing, text classification

• Less useful: machine translation

• Basically not useful: language modeling

Improving Embeddings

Limitations of Embeddings
• Sensitive to superficial differences (dog/dogs)

• Insensitive to context (financial bank, bank of a river)

• Not necessarily coordinated with knowledge or
across languages

• Not interpretable

• Can encode bias (encode stereotypical gender roles,
racial biases)

Sub-word Embeddings (1)
• Can capture sub-word regularities
Morpheme-based
(Luong et al. 2013)

Character-based
(Ling et al. 2015)

Sub-word Embeddings (2)
• Bag of character n-grams used to represent word

(Wieting et al. 2016)

where

• Use n-grams from 3-6 plus word itself

<wh, whe, her, ere, re>

Multi-prototype Embeddings
• Simple idea, words with multiple meanings should have

different embeddings (Reisinger and Mooney 2010)

• Non-parametric estimation (Neelakantan et al. 2014) also possible

Multilingual Coordination of
Embeddings (Faruqui et al. 2014)

• We have word embeddings in two languages, and want them to match

Unsupervised Coordination
of Embeddings

• In fact we can do it with no dictionary at all!
• Just use identical words, e.g. the digits (Artexte et al.

2017)
• Or just match distributions (Zhang et al. 2017)

Retrofitting of Embeddings
to Existing Lexicons

• We have an existing lexicon like WordNet, and
would like our vectors to match (Faruqui et al. 2015)

Sparse Embeddings
• Each dimension of a word embedding is not interpretable

• Solution: add a sparsity constraint to increase the
information content of non-zero dimensions for each word
(e.g. Murphy et al. 2012)

De-biasing Word
Embeddings (Bolukbasi et al. 2016)

• Word embeddings reflect bias in statistics

• Identify pairs to “neutralize”, find the direction of the trait to
neutralize, and ensure that they are neutral in that direction

A Case Study:
FastText

FastText Toolkit
• Widely used toolkit for estimating word embeddings  

https://github.com/facebookresearch/fastText/

• Fast, but effective

• Skip-gram objective w/ character n-gram based encoding

• Parallelized training in C++

• Negative sampling for fast estimation (next class)

• Pre-trained embeddings for Wikipedia on many languages 
https://github.com/facebookresearch/fastText/blob/master/
pretrained-vectors.md

https://github.com/facebookresearch/fastText/
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Questions?

