CS11-747 Neural Networks for NLP Models of Words

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2019/</u>

What do we want to know about words?

- Are they the same part of speech?
- Do they have the same conjugation?
- Do these two words mean the same thing?
- Do they have some semantic relation (is-a, part-of, went-to-school-at)?

A Manual Attempt: WordNet

 WordNet is a large database of words including parts of speech, semantic relations

- Major effort to develop, projects in many languages.
- But can we do something similar, more complete, and without the effort?

Image Credit: NLTK

An Answer (?): Word Embeddings!

• A continuous vector representation of words

- Element 1 might be more positive for nouns
- Element 2 might be positive for animate objects
- Element 3 might have no intuitive meaning whatsoever

Word Embeddings are Cool! (An Obligatory Slide)

e.g. king-man+woman = queen (Mikolov et al. 2013)

• "What is the female equivalent of king?" is not easily accessible in many traditional resources

How to Train Word Embeddings?

- Initialize randomly, train jointly with the task
- Pre-train on a supervised task (e.g. POS tagging) and test on another, (e.g. parsing)
- Pre-train on an unsupervised task (e.g. word2vec)

Unsupervised Pre-training of Word Embeddings (Summary of Goldberg 10.4)

Distributional vs. Distributed Representations

Distributional representations

- Words are similar if they appear in similar contexts (Harris 1954); distribution of words indicative of usage
- In contrast: *non-distributional* representations created from lexical resources such as WordNet, etc.

Distributed representations

- Basically, something is represented by a vector of values, each representing activations
- In contrast: *local* representations, where represented by a discrete symbol (one-hot vector)

Distributional Representations (see Goldberg 10.4.1)

• Words appear in a context

<s></s>		<s></s>		<unk< td=""><td>></td><td>comm</td><td>nunications</td><td>pittsburgh</td><td>acquired</td><td><unk></unk></td><td>&</td><td>со.</td></unk<>	>	comm	nunications	pittsburgh	acquired	<unk></unk>	&	со.
investn	nent	mana	agement	inc.		a		pittsburgh	firm	that	runs	a
<s></s>		mr.		allen		's		pittsburgh	firm	advanced	investment	management
look		stupio	d	<unk< td=""><td>></td><td>forme</td><td>er</td><td>pittsburgh</td><td><unk></unk></td><td>second</td><td><unk></unk></td><td><unk></unk></td></unk<>	>	forme	er	pittsburgh	<unk></unk>	second	<unk></unk>	<unk></unk>
through	h	the		unive	ersity	of		pittsburgh	law	school	<s></s>	<s></s>
with		the		unive	ersity	of		pittsburgh	<s></s>	<s></s>	<s></s>	<s></s>
<unk></unk>		he		head	S	the		pittsburgh	branch	of	the	committee
at		the		unive	ersity	of		pittsburgh	earn	up	to	\$
	for		society		corp.		а	cleveland	bank	said	demand	for
	as		washin	gton	<unk></unk>		r.i.	cleveland	<unk></unk>	n.c.	minneapolis	and
	<s></s>		<s></s>	•	<unk></unk>		a	cleveland	merchant	bank	owns	about
	new		stadium	ns	ranging	q	from	cleveland	to	san	antonio	and
	<s></s>		the		philade	elphia	and	cleveland	districts	for	example	reported
	mcdo	onald	&		co.		in	cleveland	said	<unk></unk>	's	unanticipated
	<unk< td=""><td>></td><td>tumor</td><td></td><td>at</td><td></td><td>the</td><td>cleveland</td><td>clinic</td><td>in</td><td>N</td><td><s> .</s></td></unk<>	>	tumor		at		the	cleveland	clinic	in	N	<s> .</s>
	at		mcdona	ald	&		со.	cleveland	<s></s>	<s></s>	<s></s>	<s></s>

(try it yourself w/ kwic.py)

Count-based Methods

- Create a word-context count matrix
 - **Count** the number of co-occurrences of word/ context, with rows as word, columns as contexts
 - Maybe **weight** with pointwise mutual information
 - Maybe reduce dimensions using SVD
- Measure their closeness using cosine similarity (or generalized Jaccard similarity, others)

Prediction-basd Methods (See Goldberg 10.4.2)

- Instead, try to predict the words within a neural network
- Word embeddings are the byproduct

Word Embeddings from Language Models

Context Window Methods

- If we don't need to calculate the probability of the sentence, other methods possible!
- These can move closer to the contexts used in count-based methods
- These drive word2vec, etc.

CBOW (Mikolov et al. 2013)

• Predict word based on sum of surrounding embeddings

Let's Try it Out! wordemb-cbow.py

Skip-gram (Mikolov et al. 2013)

Predict each word in the context given the word

Let's Try it Out! wordemb-skipgram.py

Count-based and Prediction-based Methods

- Strong connection between count-based methods and prediction-based methods (Levy and Goldberg 2014)
- Skip-gram objective is equivalent to matrix factorization with PMI and discount for number of samples k (sampling covered next time)

$$M_{w,c} = \mathrm{PMI}(w,c) - \log(k)$$

GIOVE (Pennington et al. 2014)

 A matrix factorization approach motivated by ratios of P(word | context) probabilities

	Probability and Ratio	k	= solid	k = gas	k = water	k = fashion
<u>Why?</u>	P(k ice)		9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5}
	P(k steam)	2.2	2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
	P(k ice)/P(k steam)		8.9	8.5×10^{-2}	1.36	0.96

 Nice derivation from start to final loss function that satisfies desiderata

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

Meaningful in linear space (differences, dot products) Word/context invariance Robust to low-freq. ctxts.

$$= \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

What Contexts?

- Context has a large effect!
- Small context window: more syntax-based embeddings
- Large context window: more semantics-based, topical embeddings
- Context based on syntax: more functional, w/ words with same inflection grouped

Evaluating Embeddings

Types of Evaluation

- Intrinsic vs. Extrinsic
 - Intrinsic: How good is it based on its features?
 - **Extrinsic:** How useful is it downstream?
- Qualitative vs. Quantitative
 - **Qualitative:** Examine the characteristics of examples.
 - Quantitative: Calculate statistics

Visualization of Embeddings

 Reduce high-dimensional embeddings into 2/3D for visualization (e.g. Mikolov et al. 2013)

Non-linear Projection

- Non-linear projections group things that are close in highdimensional space
- e.g. SNE/t-SNE (van der Maaten and Hinton 2008) group things that give each other a high probability according to a Gaussian

Let's Try it Out! wordemb-vis-tsne.py

t-SNE Visualization can be Misleading! (Wattenberg et al. 2016)

• Settings matter

• Linear correlations cannot be interpreted

Intrinsic Evaluation of Embeddings (categorization from Schnabel et al 2015)

- **Relatedness:** The correlation btw. embedding cosine similarity and human eval of similarity?
- **Analogy:** Find x for "*a is to b, as x is to y*".
- **Categorization:** Create clusters based on the embeddings, and measure purity of clusters.
- Selectional Preference: Determine whether a noun is a typical argument of a verb.

Extrinsic Evaluation: Using Word Embeddings in Systems

- Initialize w/ the embeddings
- Concatenate pre-trained embeddings with learned embeddings
- Latter is more expressive, but leads to increase in model parameters

How Do I Choose Embeddings?

• No one-size-fits-all embedding (Schnabel et al 2015)

	relatedness			categorization		sel.	sel. prefs		analogy							
	rg	ws	wss	wsr	men	toefl	ap	esslli batt	up	mcrae	an	ansyn a	ansem	ave	erage	
CBOW	74.0	64.0	71.5	56.5	70.7	66.7	65.9	70.5 85.2	24.1	13.9	52.2	47.8	57.6		58.6	
GloVe	63.7	54.8	65.8	49.6	64.6	69.4	64.1	65.9 77.8	27.0	18.4	42.2	44.2	39.7		53.4	
TSCCA	57.8	54.4	64.7	43.3	56.7	58.3	57.5	70.5 64.2	31.0	14.				dev	test	<i>p</i> -value
C&W	48.1	49.8	60.7	40.1	57.5	66.7	60.6	61.4 80.2	28.3	16.						P
H-PCA	19.8	32.9	43.6	15.1	21.3	54.2	34.1	50.0 42.0	-2.5	3.		Baselin	ne 94	.18	93.78	0.000
Rand Proi	171	10 5	24 9	16 1	113	514	21.9	38 6 29 6	-85	1	R	and. Pro	oj. 94	.33	93.90	0.006
Rand. 110j.	17.1	19.5	24.9	10.1	11.5	51.4	21.9	30.0 29.0	-0.5	1.		Glov	Ve 94	.28	93.93	0.015
Table 1. Res	aulte d	on ah	solute	intri	noic e	walua	tion 7	The best re	sult for	each		H-PC	A 94	.48	93.96	0.029
The second new contained the new configuration. The best result for each C&W 94.53 94.12									94.12							
The second row contains the names of the corre					orrespo	rresponding datasets.				CBO	W 94	.32	93.93	0.012		
												TSCC	A 94	.53	94.09	0.357

Table 4: F1 chunking results using different word embeddings as features. The *p*-values are with respect to the best performing method.

Be aware, and use the best one for the task

When are Pre-trained Embeddings Useful?

- Basically, when training data is insufficient
- Very useful: tagging, parsing, text classification
- Less useful: machine translation
- Basically not useful: language modeling

Improving Embeddings

Limitations of Embeddings

- Sensitive to **superficial differences** (dog/dogs)
- Insensitive to context (financial bank, bank of a river)
- Not necessarily coordinated with knowledge or across languages
- Not interpretable
- Can encode bias (encode stereotypical gender roles, racial biases)

Sub-word Embeddings (1)

 Can capture sub-word regularities Character-based <u>Morpheme-based</u> <u>(Luong et al. 2013)</u>

Sub-word Embeddings (2)

• **Bag of character n-grams** used to represent word (Wieting et al. 2016)

where ★ <wh, whe, her, ere, re>

• Use n-grams from 3-6 plus word itself

Multi-prototype Embeddings

• Simple idea, words with multiple meanings should have different embeddings (Reisinger and Mooney 2010)

• Non-parametric estimation (Neelakantan et al. 2014) also possible

Multilingual Coordination of Embeddings (Faruqui et al. 2014)

• We have word embeddings in two languages, and want them to match

Unsupervised Coordination of Embeddings

- In fact we can do it with no dictionary at all!
 - Just use identical words, e.g. the digits (Artexte et al. 2017)
 - Or just match distributions (Zhang et al. 2017)

Retrofitting of Embeddings to Existing Lexicons

 We have an existing lexicon like WordNet, and would like our vectors to match (Faruqui et al. 2015)

Sparse Embeddings

- Each dimension of a word embedding is not interpretable
- Solution: add a sparsity constraint to increase the information content of non-zero dimensions for each word (e.g. Murphy et al. 2012)

Model	Top 5 Words (per dimension)
	well, long, if, year, watch
	plan, engine, e, rock, very
SVD ₃₀₀	get, no, features, music, via
	features, by, links, free, down
	works, sound, video, building, section
	inhibitor, inhibitors, antagonists, receptors, inhibition
	bristol, thames, southampton, brighton, poole
NNSE ₁₀₀₀	delhi, india, bombay, chennai, madras
	pundits, forecasters, proponents, commentators, observers
	nosy, averse, leery, unsympathetic, snotty

De-biasing Word Embeddings (Bolukbasi et al. 2016)

• Word embeddings reflect bias in statistics

Extreme she	Extreme he		Gender stereotype she-he an	alogies	
1. nomemaker	1. maestro	sewing-carpentry	registered nurse-physician	housewife-shopkeeper	
2. nurse	2. skipper	nurse-surgeon	interior designer-architect	softball-baseball	
3. receptionist	3. protege	blond-burly	feminism-conservatism	cosmetics-pharmaceuticals	
4. librarian	4. philosopher	giggle-chuckle	vocalist-guitarist	petite-lanky	
5. socialite	5. captain	sassy-snappy	diva-superstar	charming-affable	
6. hairdresser	6. architect	volleyball-football	cupcakes-pizzas	lovely-brilliant	
7. nanny	7. financier				
8. bookkeeper	8. warrior		Gender appropriate she-he a	nalogies	
9. stylist	9. broadcaster	queen-king	sister-brother	mother-father	
10. housekeeper	10. magician	waitress-waiter	ovarian cancer-prostate cancer	r convent-monastery	

• Identify pairs to "neutralize", find the direction of the trait to neutralize, and ensure that they are neutral in that direction

A Case Study: FastText

FastText Toolkit

- Widely used toolkit for estimating word embeddings
 <u>https://github.com/facebookresearch/fastText/</u>
- Fast, but effective
 - Skip-gram objective w/ character n-gram based encoding
 - Parallelized training in C++
 - Negative sampling for fast estimation (next class)
- Pre-trained embeddings for Wikipedia on many languages <u>https://github.com/facebookresearch/fastText/blob/master/</u> <u>pretrained-vectors.md</u>

Questions?