
CS11-747 Neural Networks for NLP

Convolutional Networks  
for Text
Graham Neubig

Site
https://phontron.com/class/nn4nlp2019/

https://phontron.com/class/nn4nlp2019/

An Example Prediction Problem:
Sentence Classification

I hate this movie

I love this movie

very good
good

neutral
bad

very bad

very good
good

neutral
bad

very bad

A First Try:
Bag of Words (BOW)

I hate this movie

lookup lookup lookup lookup

+ + + +

bias

=

scores

softmax

probs

Build It, Break It

There’s nothing I don’t
love about this movie

very good
good

neutral
bad

very bad

I don’t love this movie

very good
good

neutral
bad

very bad

Continuous Bag of Words
(CBOW)

I hate this movie

+

bias

=

scores

+ + +

lookup lookup lookuplookup

W

=

Deep CBOW
I hate this movie

+

bias

=

scores

W

+ + +
=

tanh( 
 W1*h + b1)

tanh( 
 W2*h + b2)

What do Our Vectors
Represent?

• We can learn feature combinations (a node in the
second layer might be “feature 1 AND feature 5 are
active”)

• e.g. capture things such as “not” AND “hate”

• BUT! Cannot handle “not hate”

Handling Combinations

Bag of n-grams
I hate this movie

bias

sum() =

scores

softmax

probs

Why Bag of n-grams?
• Allow us to capture

combination features
in a simple way “don’t
love”, “not the best”

• Works pretty well

What Problems  
w/ Bag of n-grams?

• Same as before: parameter explosion

• No sharing between similar words/n-grams

Convolutional Neural Networks
(Time-delay Neural Networks)

1-dimensional Convolutions /
Time-delay Networks

(Waibel et al. 1989)

I hate this movie

tanh( 
 W*[x3;x4]
 +b)

tanh( 
 W*[x2;x3]
 +b)

tanh( 
 W*[x1;x2]
 +b)

combine
softmax( 

 W*h + b)

probs

These are soft 2-grams!

2-dimensional Convolutional
Networks

(LeCun et al. 1997)

Parameter extraction performs a 2D sweep, not 1D

CNNs for Text
(Collobert and Weston 2011)

• Generally based on 1D convolutions

• But often uses terminology/functions borrowed from
image processing for historical reasons

• Two main paradigms:

• Context window modeling: For tagging, etc. get
the surrounding context before tagging

• Sentence modeling: Do convolution to extract n-
grams, pooling to combine over whole sentence

CNNs for Tagging
(Collobert and Weston 2011)

CNNs for Sentence Modeling
(Collobert and Weston 2011)

Standard conv2d Function

• 2D convolution function takes input + parameters

• Input: 3D tensor

• rows (e.g. words), columns, features (“channels”)

• Parameters/Filters: 4D tensor

• rows, columns, input features, output features

Padding
• After convolution, the rows and columns of the output tensor are

either

• = to rows/columns of input tensor (“same” convolution)

• = to rows/columns of input tensor minus the size of the filter
plus one (“valid” or “narrow”)

• = to rows/columns of input tensor plus filter minus one (“wide”) 

Narrow → ← Wide

Image: Kalchbrenner et al. 2014

Striding
• Skip some of the outputs to reduce length of

extracted feature vector

I hate this movie

tanh( 
 W*[x3;x4]
 +b)

tanh( 
 W*[x2;x3]
 +b)

tanh( 
 W*[x1;x2]
 +b)

Stride 1
I hate this movie

tanh( 
 W*[x3;x4]
 +b)

tanh( 
 W*[x1;x2]
 +b)

Stride 2

Pooling
• Pooling is like convolution, but calculates some reduction

function feature-wise

• Max pooling: “Did you see this feature anywhere in the
range?” (most common)

• Average pooling: “How prevalent is this feature over the
entire range”

• k-Max pooling: “Did you see this feature up to k times?”

• Dynamic pooling: “Did you see this feature in the
beginning? In the middle? In the end?”

Let’s Try It!
cnn-class.py

Stacked Convolution

Stacked Convolution
• Feeding in convolution from previous layer results

in larger area of focus for each feature

Image Credit: Goldberg Book

Dilated Convolution
(e.g. Kalchbrenner et al. 2016)

• Gradually increase stride, every time step (no reduction in length)

i _ h a t e _ t h i s _ f i l m

sentence
class
(classification)
next char
(language 
modeling)
word class
(tagging)

Why (Dilated) Convolution
for Modeling Sentences?

• In contrast to recurrent neural networks (next class)

• + Fewer steps from each word to the final
representation: RNN O(N), Dilated CNN O(log N)

• + Easier to parallelize on GPU

• - Slightly less natural for arbitrary-length
dependencies

• - A bit slower on CPU?

Iterated Dilated Convolution
(Strubell+ 2017)

• Multiple iterations of the same stack of dilated convolutions

• Wider context, more parameter efficient

An Aside: Non-linear
Functions

Non-linear Functions
• Proper choice of a non-linear function is essential in

stacked networks  
 
 
 
 
 
 
 

• Functions such as RelU or softplus allegedly better
at preserving gradients

step tanh

soft
plus

rectifier
(RelU)

Image: Wikipedia

Which Non-linearity Should I Use?

• Ultimately an empirical
question

• Many new functions
proposed, but search by
Eger et al. (2018) over
NLP tasks found that
standard functions such
as tanh and relu quite
robust

Structured Convolution

Why Structured
Convolution?

• Language has structure, would like it to localize
features

• e.g. noun-verb pairs very informative, but not
captured by normal CNNs

Example: Dependency
Structure

Sequa makes and repairs jet engines

ROOT

SBJ COORD CONJ NMOD

OBJ

Example From: Marcheggiani and Titov 2017

Tree-structured Convolution
(Ma et al. 2015)

• Convolve over parents, grandparents, siblings

Graph Convolution
(e.g. Marcheggiani et al. 2017)

• Convolution is shaped by graph structure
• For example, dependency  

tree is a graph with
• Self-loop connections
• Dependency connections
• Reverse connections

Convolutional Models of
Sentence Pairs

Why Model Sentence Pairs?

• Paraphrase identification / sentence similarity

• Textual entailment

• Retrieval

• (More about these specific applications in two
classes)

Siamese Network
(Bromley et al. 1993)

• Use the same network,
compare the extracted
representations

• (e.g. Time-delay
networks for signature
recognition)

Convolutional Matching
Model (Hu et al. 2014)

• Concatenate sentences into a 3D tensor and perform convolution

• Shown more effective than simple Siamese network

Convolutional Features  
+ Matrix-based Pooling (Yin and Schutze 2015)

Case Study:
Convolutional Networks for Text

Classification (Kim 2015)

Convolution for Sentence Classification
(Kim 2014)

• Different widths of filters for the input
• Dropout on the penultimate layer
• Pre-trained or fine-tuned word vectors
• State-of-the-art or competitive results on sentence

classification (at the time)

Questions?

