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An Example Prediction Problem: 
Sentence Classification

I   hate   this  movie

I   love   this   movie

very good 
good 

neutral 
bad 

very bad

very good 
good 

neutral 
bad 

very bad



A First Try: 
Bag of Words (BOW)

I hate this movie
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Build It, Break It

There’s nothing I don’t 
love about this movie

very good 
good 

neutral 
bad 

very bad

I don’t love this movie

very good 
good 

neutral 
bad 

very bad



Continuous Bag of Words 
(CBOW)
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Deep CBOW
I hate this movie
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What do Our Vectors 
Represent?

• We can learn feature combinations (a node in the 
second layer might be “feature 1 AND feature 5 are 
active”) 

• e.g. capture things such as “not” AND “hate” 

• BUT! Cannot handle “not hate”



Handling Combinations



Bag of n-grams
I hate this movie

bias
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probs



Why Bag of n-grams?
• Allow us to capture 

combination features 
in a simple way “don’t 
love”, “not the best” 

• Works pretty well



What Problems  
w/ Bag of n-grams?

• Same as before: parameter explosion 

• No sharing between similar words/n-grams



Convolutional Neural Networks 
(Time-delay Neural Networks)



1-dimensional Convolutions / 
Time-delay Networks 

(Waibel et al. 1989)

I hate this movie
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tanh( 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combine
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These are soft 2-grams!



2-dimensional Convolutional 
Networks 

(LeCun et al. 1997)

Parameter extraction performs a 2D sweep, not 1D



CNNs for Text 
(Collobert and Weston 2011)

• Generally based on 1D convolutions 

• But often uses terminology/functions borrowed from 
image processing for historical reasons 

• Two main paradigms: 

• Context window modeling: For tagging, etc. get 
the surrounding context before tagging 

• Sentence modeling: Do convolution to extract n-
grams, pooling to combine over whole sentence



CNNs for Tagging 
(Collobert and Weston 2011)



CNNs for Sentence Modeling 
(Collobert and Weston 2011)



Standard conv2d Function

• 2D convolution function takes input + parameters 

• Input: 3D tensor 

• rows (e.g. words), columns, features (“channels”) 

• Parameters/Filters: 4D tensor 

• rows, columns, input features, output features



Padding
• After convolution, the rows and columns of the output tensor are 

either 

• = to rows/columns of input tensor (“same” convolution) 

• = to rows/columns of input tensor minus the size of the filter 
plus one (“valid” or “narrow”) 

• = to rows/columns of input tensor plus filter minus one (“wide”) 

Narrow → ← Wide

Image: Kalchbrenner et al. 2014



Striding
• Skip some of the outputs to reduce length of 

extracted feature vector

I hate this movie
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Stride 1
I hate this movie
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Stride 2



Pooling
• Pooling is like convolution, but calculates some reduction 

function feature-wise 

• Max pooling: “Did you see this feature anywhere in the 
range?” (most common) 

• Average pooling: “How prevalent is this feature over the 
entire range”

• k-Max pooling: “Did you see this feature up to k times?” 

• Dynamic pooling: “Did you see this feature in the 
beginning? In the middle? In the end?”



Let’s Try It!
cnn-class.py



Stacked Convolution



Stacked Convolution
• Feeding in convolution from previous layer results 

in larger area of focus for each feature

Image Credit: Goldberg Book



Dilated Convolution 
(e.g. Kalchbrenner et al. 2016)

• Gradually increase stride, every time step (no reduction in length)

i _ h a t e _ t h i s _ f i l m

sentence
class
(classification)
next char
(language 
modeling)
word class
(tagging)



Why (Dilated) Convolution 
for Modeling Sentences?

• In contrast to recurrent neural networks (next class) 

• + Fewer steps from each word to the final 
representation: RNN O(N), Dilated CNN O(log N) 

• + Easier to parallelize on GPU 

• - Slightly less natural for arbitrary-length 
dependencies 

• - A bit slower on CPU?



Iterated Dilated Convolution 
(Strubell+ 2017)

• Multiple iterations of the same stack of dilated convolutions

• Wider context, more parameter efficient



An Aside: Non-linear 
Functions



Non-linear Functions
• Proper choice of a non-linear function is essential in 

stacked networks  
 
 
 
 
 
 
 

• Functions such as RelU or softplus allegedly better 
at preserving gradients

step tanh

soft 
plus

rectifier 
(RelU)

Image: Wikipedia



Which Non-linearity Should I Use?

• Ultimately an empirical 
question 

• Many new functions 
proposed, but search by 
Eger et al. (2018) over 
NLP tasks found that 
standard functions such 
as tanh and relu quite 
robust



Structured Convolution



Why Structured 
Convolution?

• Language has structure, would like it to localize 
features 

• e.g. noun-verb pairs very informative, but not 
captured by normal CNNs



Example: Dependency 
Structure 

Sequa  makes  and  repairs  jet  engines

ROOT

SBJ COORD CONJ NMOD

OBJ

Example From: Marcheggiani  and Titov 2017



Tree-structured Convolution 
(Ma et al. 2015)

• Convolve over parents, grandparents, siblings



Graph Convolution 
(e.g. Marcheggiani et al. 2017)

• Convolution is shaped by graph structure 
• For example, dependency  

tree is a graph with 
• Self-loop connections 
• Dependency connections 
• Reverse connections



Convolutional Models of 
Sentence Pairs



Why Model Sentence Pairs?

• Paraphrase identification / sentence similarity 

• Textual entailment 

• Retrieval 

• (More about these specific applications in two 
classes)



Siamese Network 
(Bromley et al. 1993)

• Use the same network, 
compare the extracted 
representations 

• (e.g. Time-delay 
networks for signature 
recognition)



Convolutional Matching 
Model (Hu et al. 2014)

• Concatenate sentences into a 3D tensor and perform convolution

• Shown more effective than simple Siamese network



Convolutional Features  
+ Matrix-based Pooling (Yin and Schutze 2015)



Case Study: 
Convolutional Networks for Text 

Classification (Kim 2015)



Convolution for Sentence Classification 
(Kim 2014)

• Different widths of filters for the input 
• Dropout on the penultimate layer 
• Pre-trained or fine-tuned word vectors 
• State-of-the-art or competitive results on sentence 

classification (at the time)



Questions?


