CS11-747 Neural Networks for NLP Reinforcement Learning for NLP

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site <u>https://phontron.com/class/nn4nlp2019/</u>

What is Reinforcement Learning?

- Learning where we have an
 - environment X
 - ability to make actions A
 - get a delayed reward R
- Example of pong: X is our observed image, A is up or down, and R is the win/loss at the end of the game

Why Reinforcement Learning in NLP?

- We may have a **typical reinforcement learning scenario**: e.g. a dialog where we can make responses and will get a reward at the end.
- We may have **latent variables**, where we decide the latent variable, then get a reward based on their configuration.
- We may have a **sequence-level error function** such as BLEU score that we cannot optimize without first generating a whole sentence.

Reinforcment Learning Basics: Policy Gradient (Review of Karpathy 2016)

Supervised Learning

• We are given the correct decisions

$$\ell_{\text{super}}(Y, X) = -\log P(Y \mid X)$$

 In the context of reinforcement learning, this is also called "imitation learning," imitating a teacher (although imitation learning is more general)

Self Training

Sample or argmax according to the current model

 $\hat{Y} \sim P(Y \mid X)$ or $\hat{Y} = \operatorname{argmax}_Y P(Y \mid X)$

• Use this sample (or samples) to maximize likelihood

$$\ell_{\text{self}}(X) = -\log P(\hat{Y} \mid X)$$

- No correct answer needed! But is this a good idea?
- One successful alternative: co-training, only use sentences where multiple models agree (Blum and Mitchell 1998)

Policy Gradient/REINFORCE

Add a term that scales the loss by the reward

$$\ell_{\text{self}}(X) = -R(\hat{Y}, Y) \log P(\hat{Y} \mid X)$$

- Outputs that get a bigger reward will get a higher weight
- Quiz: Under what conditions is this equal to MLE?

Credit Assignment for Rewards

- How do we know which action led to the reward?
- Best scenario, immediate reward:

a_1	a_2	a_3	a 4	a_5	a_6
0	+1	0	-0.5	+1	+1.5

• Worst scenario, only at end of roll-out:

a₁ **a**₂ **a**₃ **a**₄ **a**₅ **a**₆

+3

• Often assign decaying rewards for future events to take into account the time delay between action and reward

Stabilizing Reinforcement Learning

Problems w/ Reinforcement Learning

- Like other sampling-based methods, reinforcement learning is unstable
- It is particularly unstable when using bigger output spaces (e.g. words of a vocabulary)
- A number of strategies can be used to stabilize

Adding a Baseline

 Basic idea: we have expectations about our reward for a particular sentence

	<u>Reward</u>	<u>Baseline</u>	<u>B-R</u>
"This is an easy sentence"	0.8	0.95	-0.15
"Buffalo Buffalo Buffalo"	0.3	0.1	0.2

 We can instead weight our likelihood by B-R to reflect when we did better or worse than expected

$$\ell_{\text{baseline}}(X) = -(R(\hat{Y}, Y) - B(\hat{Y}))\log P(\hat{Y} \mid X)$$

• (Be careful to not backprop through the baseline)

Calculating Baselines

- Choice of a baseline is arbitrary
- Option 1: predict final reward using linear from current state (e.g. Ranzato et al. 2016)
 - Sentence-level: one baseline per sentence
 - Decoder state level: one baseline per output action
- Option 2: use the mean of the rewards in the batch as the baseline (e.g. Dayan 1990)

Increasing Batch Size

- Because each sample will be high variance, we can sample many different examples before performing update
- We can increase the number of examples (roll-outs) done before an update to stabilize
- We can also save previous roll-outs and re-use them when we update parameters (experience replay, Lin 1993)

Warm-start

- Start training with maximum likelihood, then switch over to REINFORCE
- Works only in the scenarios where we can run MLE (not latent variables or standard RL settings)
- MIXER (Ranzato et al. 2016) gradually transitions from MLE to the full objective

When to Use Reinforcement Learning?

- If you are in a setting where the correct actions are not given, and the structure of the computation depends on the choices you make:
 - Yes, you have no other obvious choice.
- If you are in a setting where correct actions are not given but computation structure doesn't change.
 - A differentiable approximation (e.g. Gumbel Softmax) may be more stable.
- If you can train using MLE, but want to use a non-decomposable loss function.
 - Maybe yes, but many other methods (max margin, min risk) also exist.

An Alternative: Value-based Reinforcement Learning

Policy-based vs. Value-based

- Policy-based learning: try to learn a good probabilistic policy that maximizes the expectation of reward
- Value-based learning: try to guess the "value" of the result of taking a particular action, and take the action with the highest expected value

Action-Value Function

- Given a state **s**, we try to estimate the "value" of each action a
 - Value is the expected reward given that we take that action

$$Q(\boldsymbol{s}_t, \boldsymbol{a}_t) = \mathbb{E}[\sum_t^T R(\boldsymbol{a}_t)]$$

- e.g. in a sequence-to-sequence model, our state will be the input and previously generated words, action will be the next word to generate
- We then take the action that maximizes the reward

$$\hat{a}_t = \operatorname{argmax}_{a_t} Q(\boldsymbol{s}_t, a_t)$$

• Note: this is not a probabilistic model!

Estimating Value Functions

Tabular Q Learning: Simply remember the Q function for every state and update

$$Q(\boldsymbol{s}_t, a_t) \leftarrow (1 - \alpha)Q(\boldsymbol{s}_t, a_t) + \alpha R(a_t)$$

 Neural Q Function Approximation: Perform regression with neural networks (e.g. Tesauro 1995)

Exploration vs. Exploitation

- Problem: if we always take the best option, we might get stuck in a local minimum
 - Note: this is less of a problem with stochastic policybased methods, as we randomly sample actions
- Solution: every once in a while randomly pick an action with a certain probability ε
 - This is called the ϵ -greedy strategy
- Intrinsic reward: give reward to models that discover new states (Schmidhuber 1991, Bellemare et al. 2016)

Examples of Reinforcement Learning in NLP

RL in Dialog

- Dialog was one of the first major successes in reinforcement learning in NLP (Survey: Young et al. 2013)
 - Standard tools: Markov decision processes, partially observed MDPs (to handle uncertainty)
- Now, neural network models for both task-based (Williams and Zweig 2017) and chatbot dialog (Li et al. 2017)

User Simulators for Reinforcement Learning in Dialog

- Problem: paucity of data!
- Solution, create a user simulator that has an internal state (Schatzmann et al. 2007)
- Dialog system must learn to track user state w/ incomplete information

$$C_{0} = \begin{bmatrix} type = bar \\ drinks = beer \\ area = central \end{bmatrix}$$

$$R_{0} = \begin{bmatrix} name = \\ addr = \\ phone = \end{bmatrix}$$
Sys 0 Hello, how may I help you?
$$A_{1} = \begin{bmatrix} inform(type = bar) \\ inform(drinks = beer) \\ inform(area = central) \\ request(name) \\ request(addr) \\ request(addr) \\ request(phone) \\ bye() \end{bmatrix}$$
Usr 1 I'm looking for a nice bar serving beer.
Sys 1 Ok, a wine bar. What pricerange?
$$A_{2} = \begin{bmatrix} negate(drinks = beer) \\ inform(area = central) \\ request(name) \\ request(phone) \\ bye() \end{bmatrix}$$

Usr 2 No, beer please!

Mapping Instructions to Actions

 Following windows commands with weak supervision based on progress (Branavan et al. 2009)

и: ā:	<pre>click Run, and press OK after typing secpol.msc in the open box. C: left-click R: [Run]</pre>	:3	 Search Help Run Shut Down Start
u: ā:	<pre>click Run, and press OK after typing secpol.msc in the open box. left-click Run C: type-into R: [open "secpol.msc"]</pre>	8:	Run Type the name of a program, and Windows will open it for you. Open: secpol.msc Ok Cancel Browse The Start
и: ā:	click Run, and press OK after typing secpol.msc in the open box. left-click Run type-into open "secpol.msc" C: left-click R: [OK]	8:	Run Type the name of a program, and Windows will open it for you. Open: secpol.msc Ok Cancel Browse

Visual instructions with neural nets (Misra et al. 2017)

Reinforcement Learning for Making Incremental Decisions in MT

• We want to translate before the end of the sentence for MT, agent decides whether to wait or translate (Grissom et al. 2014, Gu et al. 2017)

RL for Information Retrieval

 Find evidence for an information extraction task by searching the web as necessary (Narasimhan et al. 2016)

• Perform query reformulation (Nogueira and Cho 2017)

RL for Coarse-to-fine Question Answering (Choi et al. 2017)

 In a long document, it may be useful to first pare down sentences before reading in depth

RL to Learn Neural Network Structure (Zoph and Le 2016)

 Generate a neural network structure, try it, and measure the results as a reward

Questions?