
CS11-747 Neural Networks for NLP

Parsing with Dynamic
Programming

Graham Neubig

Site
https://phontron.com/class/nn4nlp2019/

https://phontron.com/class/nn4nlp2019/

Two Types of 
Linguistic Structure

• Dependency: focus on relations between words

• Phrase structure: focus on the structure of the sentence

I saw a girl with a telescope

PRP VBD DT NN IN DT NN

NP NP
PP

VP
S

I saw a girl with a telescope

ROOT

Parsing
• Predicting linguistic structure from input sentence

• Transition-based models

• step through actions one-by-one until we have output

• like history-based model for POS tagging

• Dynamic programming-based models

• calculate probability of each edge/constituent, and perform
some sort of dynamic programming

• like linear CRF model for POS

Minimum Spanning Tree
Parsing Models

(First Order) Graph-based
Dependency Parsing

• Express sentence as fully connected directed graph
• Score each edge independently
• Find maximal spanning tree

this

is an

example

this

is an

example

-1
7 -4

-6-2 3
-2
-5

4 -2 -3 5

this

is an

example
4

7

5

Graph-based vs. 
Transition Based

• Transition-based

• + Easily condition on infinite tree context (structured
prediction)

• - Greedy search algorithm causes short-term mistakes

• Graph-based

• + Can find exact best global solution via DP algorithm

• - Have to make local independence assumptions

Chu-Liu-Edmonds
(Chu and Liu 1965, Edmonds 1967)
• We have a graph and want to find its spanning tree

• Greedily select the best incoming edge to each node
(and subtract its score from all incoming edges)

• If there are cycles, select a cycle and contract it into a
single node

• Recursively call the algorithm on the graph with the
contracted node

• Expand the contracted node, deleting an edge
appropriately

Chu-Liu-Edmonds (1): 
Find the Best Incoming

(Figure Credit: Jurafsky and Martin)

Chu-Liu-Edmonds (2): 
Subtract the Max for Each

(Figure Credit: Jurafsky and Martin)

Chu-Liu-Edmonds (3): 
Contract a Node

(Figure Credit: Jurafsky and Martin)

Chu-Liu-Edmonds (4): 
Recursively Call Algorithm

(Figure Credit: Jurafsky and Martin)

Chu-Liu-Edmonds (5): 
Expand Nodes and Delete Edge

(Figure Credit: Jurafsky and Martin)

Other Dynamic Programs
• Eisner’s Algorithm (Eisner 1996):

• A dynamic programming algorithm to combine together
trees in O(n3)

• Creates projective dependency trees (Chu-Liu-
Edmonds is non-projective)

• Tarjan’s Algorithm (Tarjan 1979, Gabow and Tarjan 1983):

• Like Chu-Liu-Edmonds, but better asymptotic runtime
O(m + n log n)

Training Algorithm
(McDonald et al. 2005)

• Basically use structured hinge loss (covered in
structured prediction class)

• Find the highest scoring tree, penalizing each
correct edge by the margin

• If the found tree is not equal to the correct tree,
update parameters using hinge loss

Features for Graph-based
Parsing (McDonald et al. 2005)

• What features did we use before neural nets?

• All conjoined with arc direction and arc distance
• Also use POS combination features
• Also represent words w/ prefix if they are long

Higher-order Dependency Parsing
(e.g. Zhang and McDonald 2012)

• Consider multiple edges at a time when calculating scores

• + Can extract more expressive features
• - Higher computational complexity, approximate search necessary

I saw a girl with a telescope I saw a girl with a telescope

I saw a girl with a telescope I saw a girl with a telescope

I saw a girl with a telescope I saw a girl with a telescope

First Order

Second Order

Third Order

Neural Models for Graph-
based Parsing

Neural Feature Combinators
(Pei et al. 2015)

• Extract traditional features, let NN do feature
combination

• Similar to Chen and Manning (2014)’s transition-
based model

• Use cube + tanh activation function

• Use averaged embeddings of phrases

• Use second-order features

Phrase Embeddings
(Pei et al. 2015)

• Motivation: words surrounding or between head
and dependent are important clues

• Take average of embeddings

Do Neural Feature Combinators Help?
(Pei et al. 2015)

• Yes!

• 1st-order: LAS 90.39->91.37, speed 26 sent/sec

• 2nd-order: LAS 91.06->92.13, speed 10 sent/sec

• 2nd-order neural better than 3rd-order non-neural
at UAS

BiLSTM Feature Extractors
(Kipperwasser and Goldberg 2016)

• Simpler and better accuracy than manual extraction

BiAffine Classifier
(Dozat and Manning 2017)

• Just optimize the likelihood of the parent, no structured training
• This is a local model, with global decoding using MST at the end

• Best results (with careful parameter tuning) on universal
dependencies parsing task

Learn specific representations
for head/dependent for each word

Calculate score of each arc

Global Training
• Previously: margin-based global training, local probabilistic

training
• What about global probabilistic models?  
 
 
 

• Algorithms for calculating partition functions:
• Projective parsing: Eisner algorithm is a bottom-up CKY-

style algorithm for dependencies (Eisner et al. 1996)
• Non-projective parsing: Matrix-tree theorem can compute

marginals over directed graphs (Koo et al. 2007)
• Applied to neural models in Ma et al. (2017)

P (Y | X) =
e
P|Y |

j=1 S(yj |X,y1,...,yj�1)

P
Ỹ 2V ⇤ e

P|Ỹ |
j=1 S(ỹj |X,ỹ1,...,ỹj�1)

Dynamic Programming for
Phrase Structure Parsing

Phrase Structure Parsing
• Models to calculate phrase structure

I saw a girl with a telescope

PRP VBD DT NN IN DT NN

NP NP
PP

VP
S

• Important insight: parsing is similar to tagging
• Tagging is search in a graph for the best path
• Parsing is search in a hyper-graph for the best tree

What is a Hyper-Graph?
• The “degree” of an edge is the number of children 
 
 
 
 

• The degree of a hypergraph is the maximum
degree of its edges

• A graph is a hypergraph of degree 1!

Tree Candidates as Hypergraphs
• With edges in one tree or another

Weighted Hypergraphs
• Like graphs, can add weights to hypergraph edges
• Generally negative log probability of production

Hypergraph Search: CKY Algorithm
• Find the highest-scoring tree given a CFG grammar
• Create a hypergraph containing all candidates for a

binarized grammar, do hypergraph search

• Analogous to Viterbi algorithm, but Viterbi is over
graphs, CKY is over hyper-graphs

Hypergraph Partition Function:
Inside-outside Algorithm

• Find the marginal probability of each span given a
CFG grammar

• Partition function us probability of the top span

• Same as CKY, except we logsumexp instead of max

• Analogous to forward-backward algorithm, but
forward-backward is over graphs, inside-outside is
over hyper-graphs

Neural CRF Parsing
(Durrett and Klein 2015)

• Predict score of each span using FFNN
• Do discrete structured inference using CKY, inside-outside

Span Labeling
(Stern et al. 2017)

• Simple idea: try to decide whether span is
constituent in tree or not

• Allows for various loss functions (local vs.
structured), inference algorithms (CKY, top down)

An Alternative: 
Parse Reranking

An Alternative: Parse
Reranking

• You have a nice model, but it’s hard to implement a
dynamic programming decoding algorithm

• Try reranking!

• Generate with an easy-to-decode model

• Rescore with your proposed model

Examples of Reranking

• Inside-outside recursive neural networks (Le and
Zuidema 2014)

• Parsing as language modeling (Choe and Charniak
2016)

• Recurrent neural network grammars (Dyer et al.
2016)

A Word of Caution about
Reranking! (Fried et al. 2017)

• Your reranking model got SOTA results, great!

• But, it might be an effect of model combination (which we know
works very well)

• The model generating the parses prunes down the search
space

• The reranking model chooses the best parse only in that space!

Questions?

