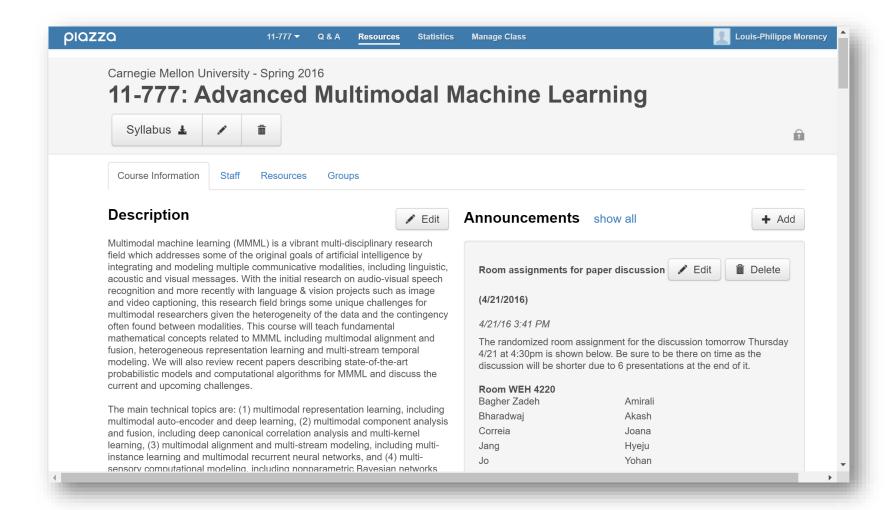


Multimodal Machine Learning

Louis-Philippe (LP) Morency

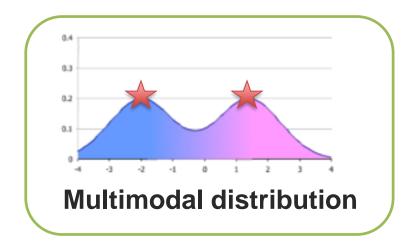
CMU Multimodal Communication and Machine Learning Laboratory [MultiComp Lab]

CMU Course 11-777: Multimodal Machine Learning

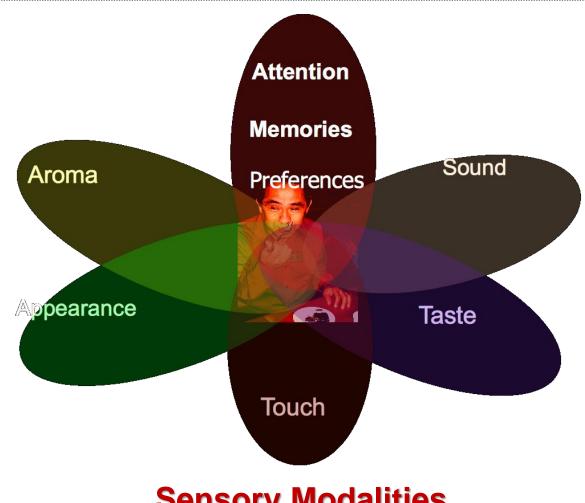


Lecture Objectives

- What is Multimodal?
- Multimodal: Core technical challenges
 - Representation learning, translation, alignment, fusion and co-learning
- Multimodal representation learning
 - Joint and coordinated representations
 - Multimodal autoencoder and tensor representation
 - Deep canonical correlation analysis
- Fusion and temporal modeling
 - Multi-view LSTM and memory-based fusion
 - Fusion with multiple attentions



Multiple modes, i.e., distinct "peaks" (local maxima) in the probability density function



Sensory Modalities

Multimodal Communicative Behaviors

Verbal

Lexicon

Words

Syntax

Part-of-speech Dependencies

Pragmatics

Discourse acts

Vocal

Prosody

Intonation

Voice quality

Vocal expressions

Laughter, moans

Visual

Gestures

Head gestures

Eye gestures

Arm gestures

Body language

Body posture

Proxemics

Eye contact

Head gaze

Eye gaze

Facial expressions

FACS action units

Smile, frowning

Modality

The way in which something happens or is experienced.

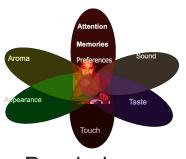
- Modality refers to a certain type of information and/or the representation format in which information is stored.
- Sensory modality: one of the primary forms of sensation, as vision or touch; channel of communication.

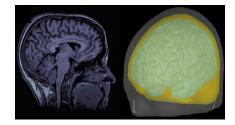
Medium ("middle")

A means or instrumentality for storing or communicating information; system of communication/transmission.

 Medium is the means whereby this information is delivered to the senses of the interpreter.

Multiple Communities and Modalities





Psychology

Medical

Speech

Vision



Language

Multimedia

Robotics

Learning

Examples of Modalities

- ☐ Natural language (both spoken or written)
- ☐ Visual (from images or videos)
- Auditory (including voice, sounds and music)
- □ Haptics / touch
- Smell, taste and self-motion
- Physiological signals
 - Electrocardiogram (ECG), skin conductance
- Other modalities
 - Infrared images, depth images, fMRI

Prior Research on "Multimodal"

Four eras of multimodal research

- > The "behavioral" era (1970s until late 1980s)
- > The "computational" era (late 1980s until 2000)
- > The "interaction" era (2000 2010)
- > The "deep learning" era (2010s until ...)
 - Main focus of this tutorial

The McGurk Effect (1976)

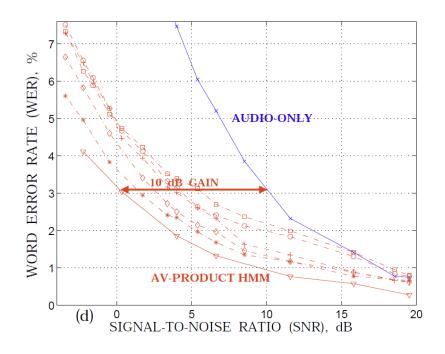
Hearing lips and seeing voices - Nature

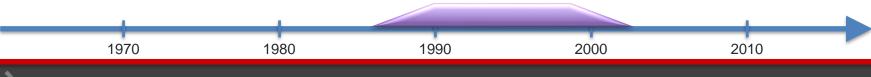
The McGurk Effect (1976)

Hearing lips and seeing voices - Nature

> The "Computational" Era(Late 1980s until 2000)

1) Audio-Visual Speech Recognition (AVSR)





Core Technical Challenges

Core Challenges in "Deep" Multimodal ML

Representation

Alignment

Fusion

Translation

Co-Learning

Multimodal Machine Learning: A Survey and Taxonomy

By Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency

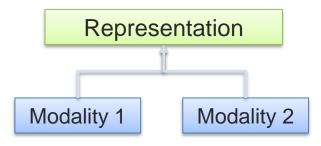
https://arxiv.org/abs/1705.09406

☑ 37 taxonomic classes

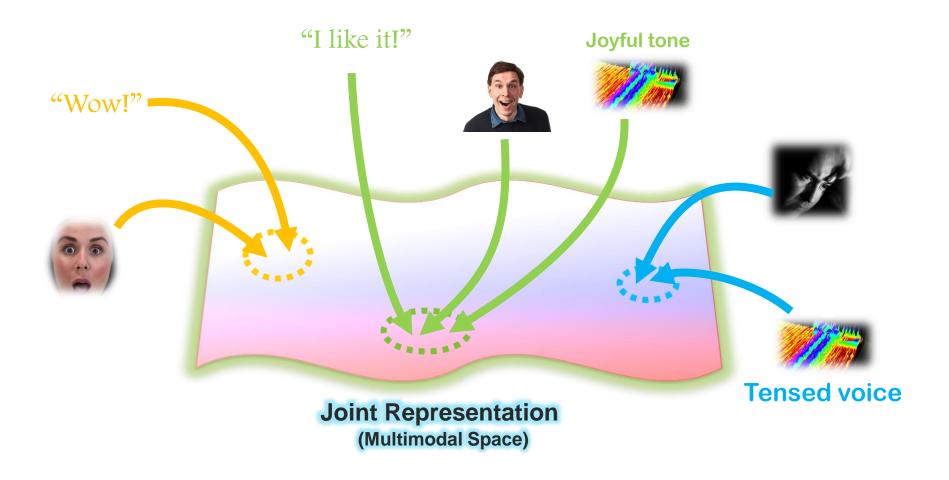
☑ 253 referenced citations

Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.



Joint Multimodal Representation



Joint Multimodal Representations

Audio-visual speech recognition [Ngiam et al., ICML 2011]

Bimodal Deep Belief Network

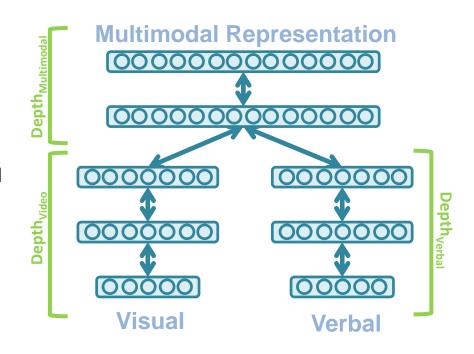
Image captioning

[Srivastava and Salahutdinov, NIPS 2012]

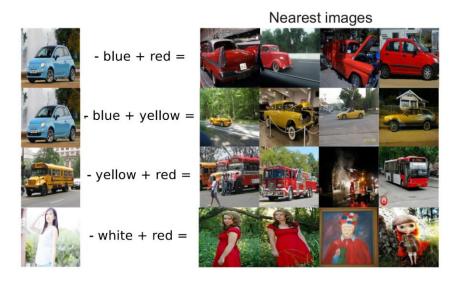
Multimodal Deep Boltzmann Machine

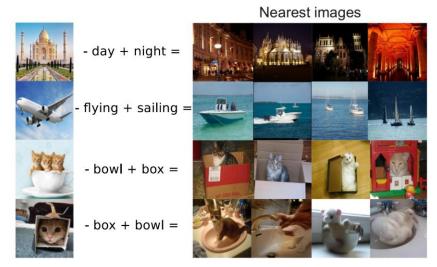
Audio-visual emotion recognition [Kim et al., ICASSP 2013]

Deep Boltzmann Machine



Multimodal Vector Space Arithmetic

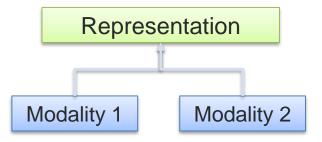




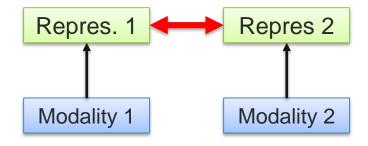
[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]

Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.



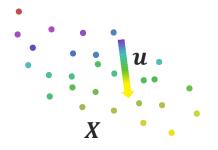
B Coordinated representations:

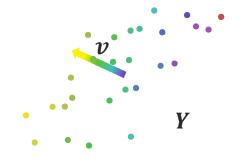


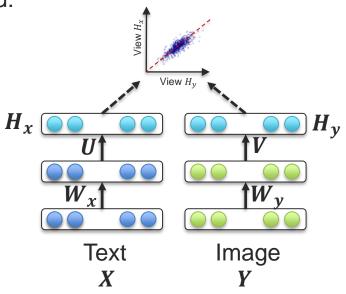
Coordinated Representation: Deep CCA

Learn linear projections that are maximally correlated:

$$(\boldsymbol{u}^*, \boldsymbol{v}^*) = \underset{\boldsymbol{u}, \boldsymbol{v}}{\operatorname{argmax}} corr(\boldsymbol{u}^T \boldsymbol{X}, \boldsymbol{v}^T \boldsymbol{Y})$$



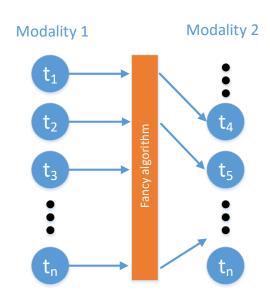




Andrew et al., ICML 2013

Core Challenge 2: Alignment

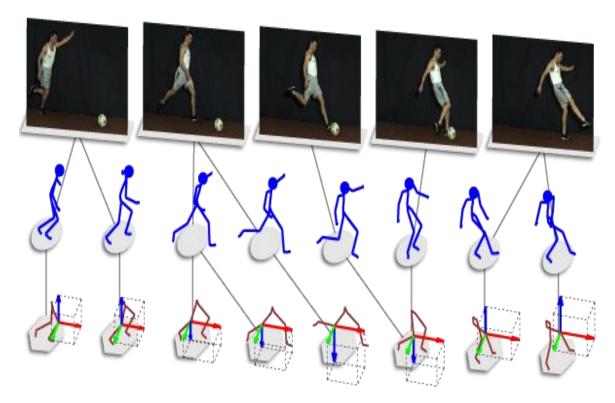
Definition: Identify the direct relations between (sub)elements from two or more different modalities.



The goal is to directly find correspondences between elements of different modalities

Uses internally latent alignment of modalities in order to better solve a different problem

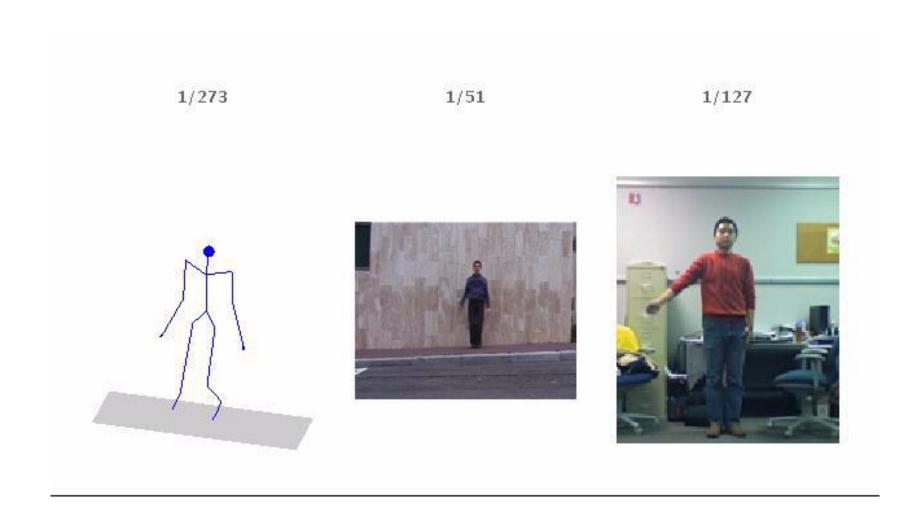
Temporal sequence alignment



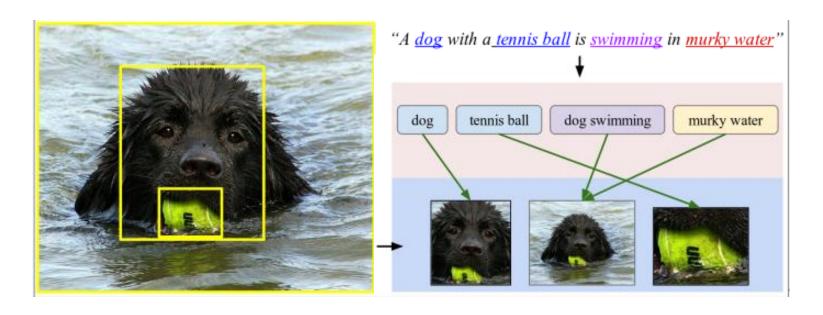
Applications:

- Re-aligning asynchronous data
- Finding similar data across modalities (we can estimate the aligned cost)
- Event reconstruction from multiple sources

Alignment examples (multimodal)



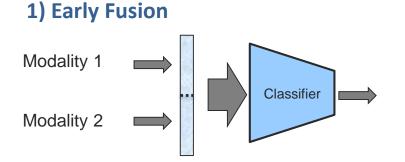
Implicit Alignment



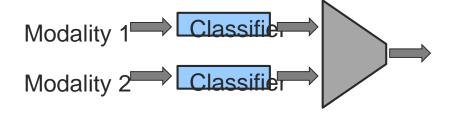
Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping, https://arxiv.org/pdf/1406.5679.pdf

Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a prediction task.



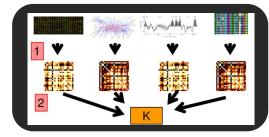
2) Late Fusion



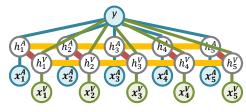
Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a prediction task.

- B Model-Based (Intermediate) Approaches
 - 1) Deep neural networks
 - 2) Kernel-based methods
 - 3) Graphical models



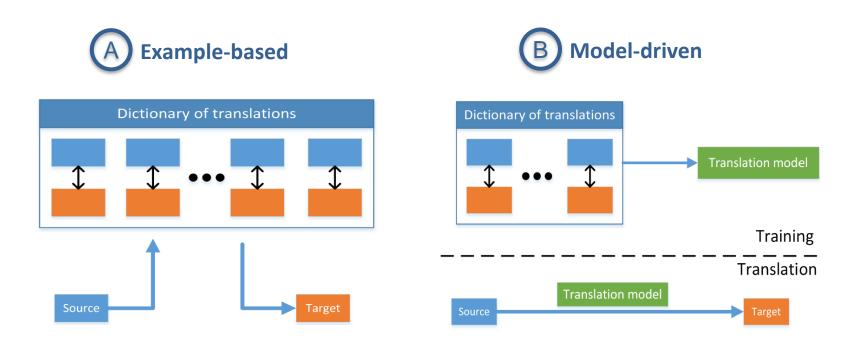
Multiple kernel learning



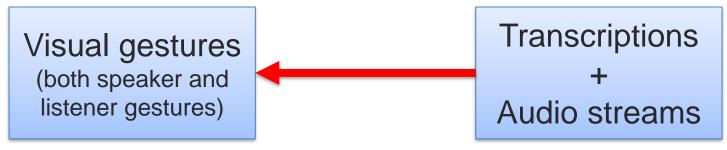
Multi-View Hidden CRF

Core Challenge 4: Translation

Definition: Process of changing data from one modality to another, where the translation relationship can often be open-ended or subjective.



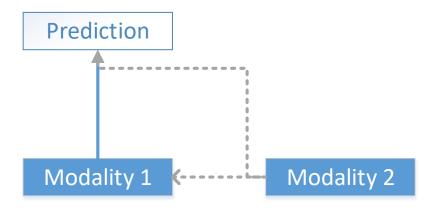
Core Challenge 4 – Translation



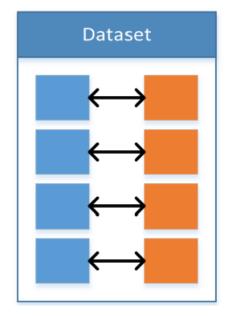
Marsella et al., Virtual character performance from speech, SIGGRAPH/Eurographics Symposium on Computer Animation, 2013

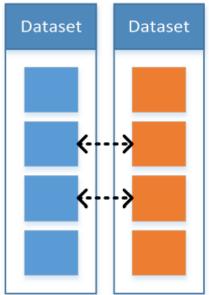
Core Challenge 5: Co-Learning

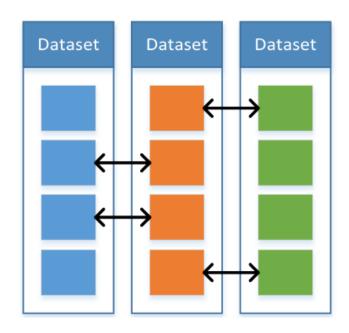
Definition: Transfer knowledge between modalities, including their representations and predictive models.

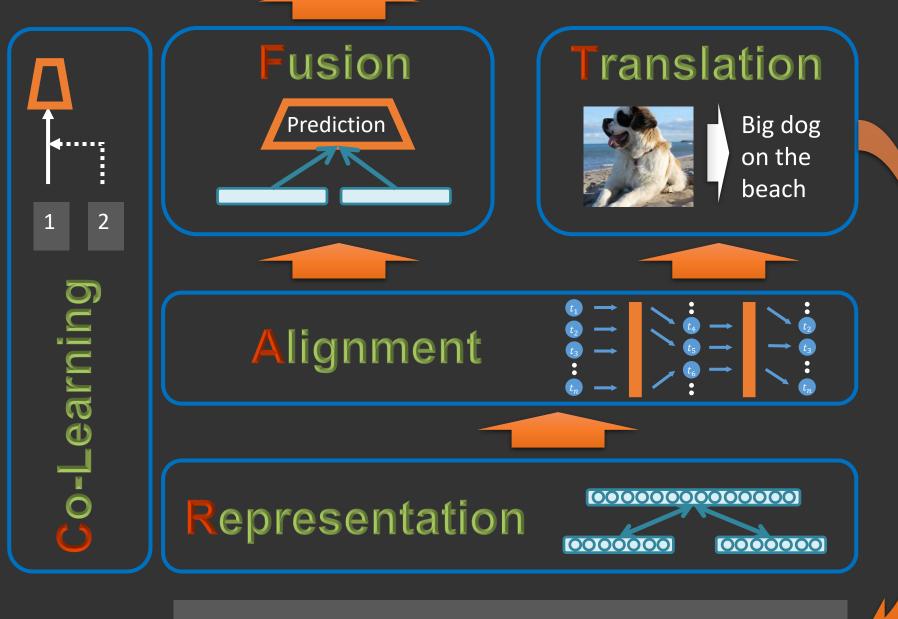


Core Challenge 5: Co-Learning









Input Modalities

Language Visual Acoustic

Taxonomy of Multimodal Research

[https://arxiv.org/abs/1705.09406]

Representation

- Joint
 - Neural networks
 - o Graphical models
 - Sequential
- Coordinated
 - Similarity
 - Structured

Translation

- Example-based
 - Retrieval
 - Combination
- Model-based
 - Grammar-based

- Encoder-decoder
- Online prediction

Alignment

- Explicit
 - Unsupervised
 - Supervised
- Implicit
 - Graphical models
 - Neural networks

Fusion

- Model agnostic
 - Early fusion
 - Late fusion
 - Hybrid fusion

Model-based

- Kernel-based
- o Graphical models
- Neural networks

Co-learning

- Parallel data
 - o Co-training
 - Transfer learning
- Non-parallel data
 - Zero-shot learning
 - Concept grounding
 - Transfer learning
- Hybrid data
 - Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

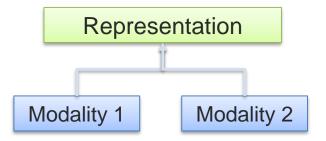
	CHALLENGES				
APPLICATIONS	REPRESENTATION	TRANSLATION	Fusion	ALIGNMENT	Co-learning
Speech Recognition and Synthesis					
Audio-visual Speech Recognition	✓		/	✓	✓
(Visual) Speech Synthesis	✓	✓			
Event Detection					
Action Classification	✓		/		✓
Multimedia Event Detection	✓		/		✓
Emotion and Affect					
Recognition	✓		/	✓	✓
Synthesis	✓	✓			
Media Description					
Image Description	✓	✓		✓	✓
Video Description	✓	\checkmark	/	✓	✓
Visual Question-Answering	✓		/	✓	✓
Media Summarization	✓	✓	/		
Multimedia Retrieval					
Cross Modal retrieval	✓	✓		✓	✓
Cross Modal hashing	✓				✓

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

Multimodal Representations

Core Challenge: Representation

Definition: Learning how to represent and summarize multimodal data in away that exploits the complementarity and redundancy.

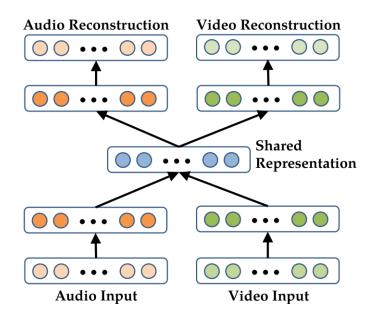


B Coordinated representations:



Deep Multimodal autoencoders

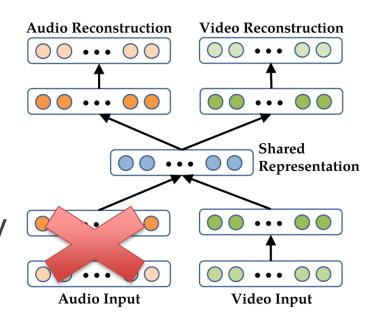
- A deep representation learning approach
- A bimodal auto-encoder
 - Used for Audio-visual speech recognition



[Ngiam et al., Multimodal Deep Learning, 2011]

Deep Multimodal autoencoders - training

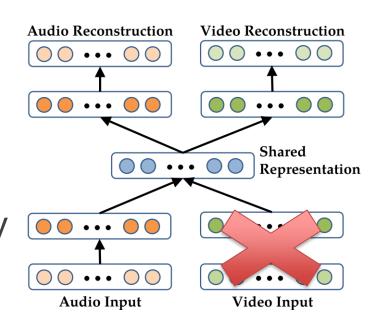
- Individual modalities can be pretrained
 - RBMs
 - Denoising Autoencoders
- To train the model to reconstruct the other modality
 - Use both
 - Remove audio



[Ngiam et al., Multimodal Deep Learning, 2011]

Deep Multimodal autoencoders - training

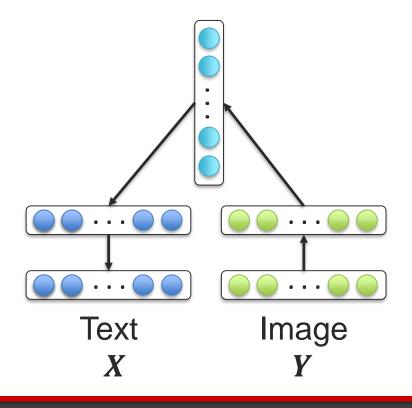
- Individual modalities can be pretrained
 - RBMs
 - Denoising Autoencoders
- To train the model to reconstruct the other modality
 - Use both
 - Remove audio
 - Remove video



[Ngiam et al., Multimodal Deep Learning, 2011]

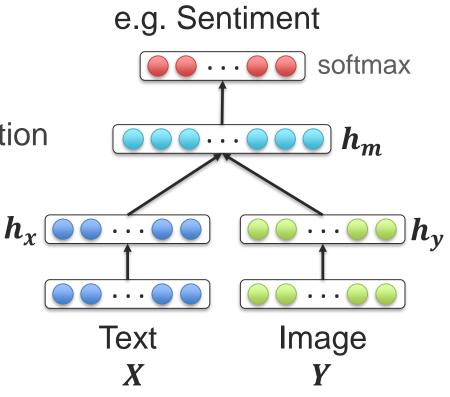
Multimodal Encoder-Decoder

- Visual modality often encoded using CNN
- Language modality will be decoded using LSTM
 - A simple multilayer perceptron will be used to translate from visual (CNN) to language (LSTM)



Multimodal Joint Representation

- For supervised learning tasks
- Joining the unimodal representations:
 - Simple concatenation
 - Element-wise multiplication or summation
 - Multilayer perceptron
- How to explicitly model both unimodal and bimodal interactions?



Multimodal Sentiment Analysis

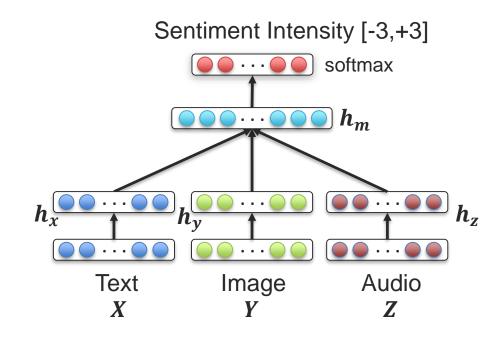
MOSI dataset (Zadeh et al, 2016)



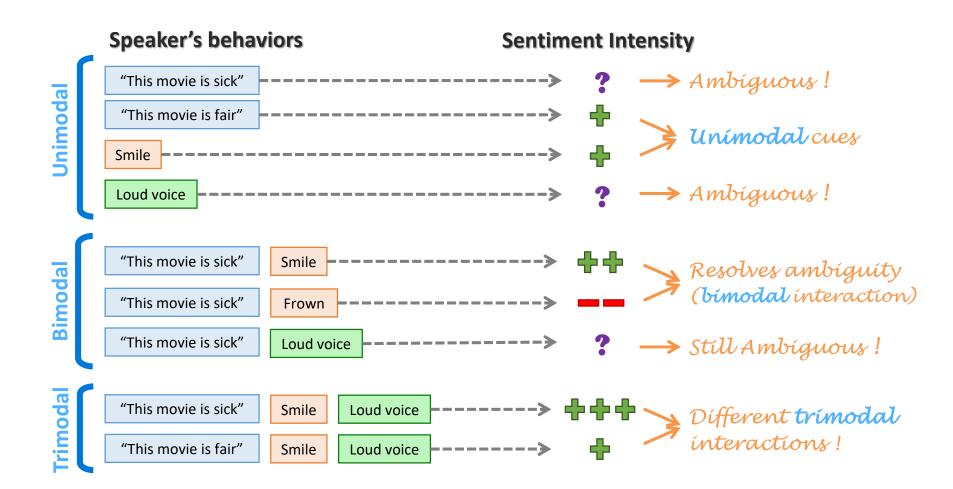
- 2199 subjective video segments
- Sentiment intensity annotations
- 3 modalities: text, video, audio

Multimodal joint representation:

$$h_m = f(W \cdot [h_x, h_y, h_z])$$



Unimodal, Bimodal and Trimodal Interactions

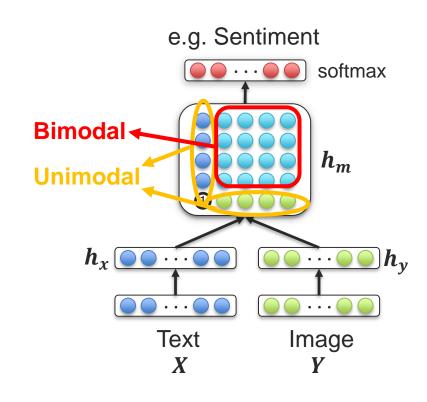


Multimodal Tensor Fusion Network (TFN)

Models both unimodal and bimodal interactions:

$$h_{m} = \begin{bmatrix} h_{x} \\ 1 \end{bmatrix} \otimes \begin{bmatrix} h_{y} \\ 1 \end{bmatrix} = \begin{bmatrix} h_{x} \\ 1 \end{bmatrix} \begin{bmatrix} h_{x} \otimes h_{y} \\ h_{y} \end{bmatrix}$$
Important!

[Zadeh, Jones and Morency, EMNLP 2017]



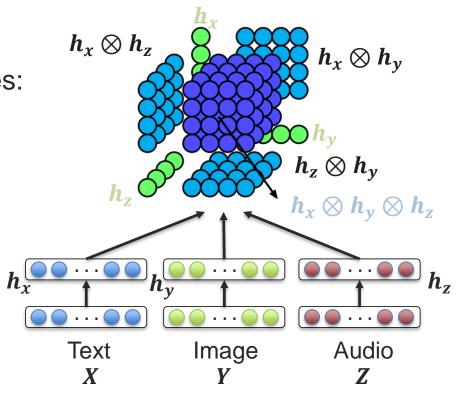
Multimodal Tensor Fusion Network (TFN)

Can be extended to three modalities:

$$\boldsymbol{h_m} = \begin{bmatrix} \boldsymbol{h}_x \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \boldsymbol{h}_y \\ 1 \end{bmatrix} \otimes \begin{bmatrix} \boldsymbol{h}_z \\ 1 \end{bmatrix}$$

Explicitly models unimodal, bimodal and trimodal interactions!

[Zadeh, Jones and Morency, EMNLP 2017]



Experimental Results – MOSI Dataset

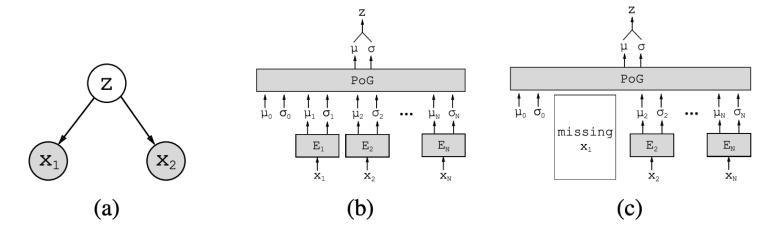
Multimodal Baseline	Binary		5-class	Regression	
	Acc(%)	F1	Acc(%)	MAE	\overline{r}
Random	50.2	48.7	23.9	1.88	_
C-MKL	73.1	75.2	35.3	-	-
SAL-CNN	73.0	-	-	-	-
SVM-MD	71.6	72.3	32.0	1.10	0.53
RF	71.4	72.1	31 9	1 11	0.51
TFN	77.1	77.9	42.0	0.87	0.70
Human	85.7	87.5	53.9	0.71	0.82
Δ^{SOTA}	† 4.0	† 2.7	↑ 6.7	↓ 0.23	↑ 0.17

Baseline	Binary		5-class	Regression	
	Acc(%)	F1	Acc(%)	MAE	r
$\overline{ ext{TFN}_{language}}$	74.8	75.6	38.5	0.99	0.61
TFN_{visual}	66.8	70.4	30.4	1.13	0.48
$TFN_{acoustic}$	65.1	67.3	27.5	1.23	0.36
$\overline{ ext{TFN}_{bimodal}}$	75.2	76.0	39.6	0.92	0.65
$TFN_{trimodal}$	74.5	75.0	38.9	0.93	0.65
$TFN_{notrimodal}$	75.3	76.2	39.7	0.919	0.66
TFN	77.1	77.9	42.0	0.87	0.70
TFN_{early}	75.2	76.2	39.0	0.96	0.63

→ Improvement over State-Of-The-Art

Multimodal VAE (MVAE)

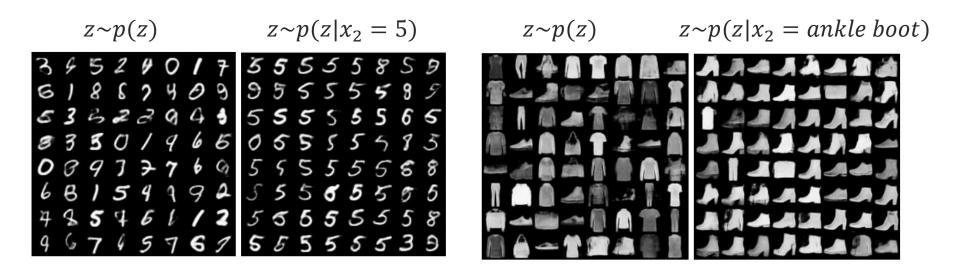
 Introduce a multimodal variational autoencoder (MVAE) with a new training paradigm that learns a joint distribution and is robust to missing data



[Wu, Mike, and Noah Goodman. "Multimodal Generative Models for Scalable Weakly-Supervised Learning.", NIPS 2018]

Multimodal VAE (MVAE)

 Transform unimodal datasets into "multi-modal" problems by treating labels as a second modality

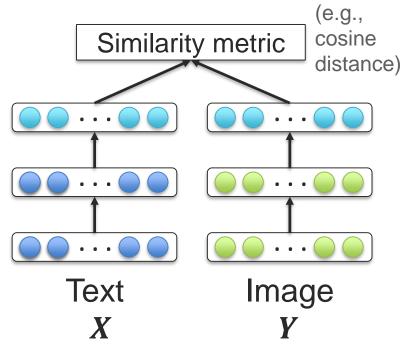


[Wu, Mike, and Noah Goodman. "Multimodal Generative Models for Scalable Weakly-Supervised Learning.", NIPS 2018]

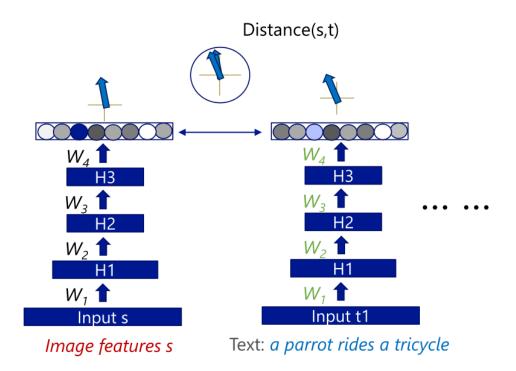
Coordinated Multimodal Representations

Coordinated Multimodal Representations

Learn (unsupervised) two or more coordinated representations from multiple modalities. A loss function is defined to bring closer these multiple representations.



Coordinated Multimodal Embeddings



[Huang et al., Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, 2013]

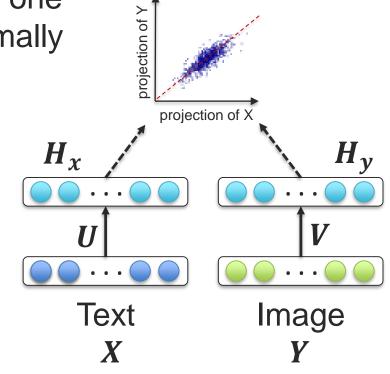
Canonical Correlation Analysis

"canonical": reduced to the simplest or clearest schema possible

1 Learn two linear projections, one for each view, that are maximally correlated:

$$(u^*, v^*) = \underset{u,v}{\operatorname{argmax}} corr(H_x, H_y)$$

$$= \underset{u,v}{\operatorname{argmax}} corr(u^T X, v^T Y)$$



Correlated Projection

1 Learn two linear projections, one for each view, that are maximally correlated:

$$(\boldsymbol{u}^*, \boldsymbol{v}^*) = \underset{\boldsymbol{u}, \boldsymbol{v}}{\operatorname{argmax}} corr(\boldsymbol{u}^T \boldsymbol{X}, \boldsymbol{v}^T \boldsymbol{Y})$$

Two views *X*, *Y* where same instances have the same color

Canonical Correlation Analysis

We want to learn multiple projection pairs $(u_{(i)}X, v_{(i)}Y)$:

$$(\boldsymbol{u}_{(i)}^*, \boldsymbol{v}_{(i)}^*) = \operatorname*{argmax} corr \left(\boldsymbol{u}_{(i)}^T \boldsymbol{X}, \boldsymbol{v}_{(i)}^T \boldsymbol{Y}\right) \quad \approx \boldsymbol{u}_{(i)}^T \boldsymbol{\Sigma}_{\boldsymbol{X} \boldsymbol{Y}} \boldsymbol{v}_{(i)}$$

We want these multiple projection pairs to be orthogonal ("canonical") to each other:

$$egin{aligned} m{u}_{(i)}^T m{\Sigma}_{XY} m{v}_{(j)} &= m{u}_{(j)}^T m{\Sigma}_{XY} m{v}_{(i)} &= m{0} \qquad ext{for } i
eq j \end{aligned}$$
 $m{U} m{\Sigma}_{XY} m{V} &= tr(m{U} m{\Sigma}_{XY} m{V}) \qquad ext{where } m{U} &= [m{u}_{(1)}, m{u}_{(2)}, ..., m{u}_{(k)}] \end{aligned}$ and $m{V} = [m{v}_{(1)}, m{v}_{(2)}, ..., m{v}_{(k)}]$

Canonical Correlation Analysis

3 Since this objective function is invariant to scaling, we can constraint the projections to have unit variance:

$$U^T \Sigma_{XX} U = I \qquad V^T \Sigma_{YY} V = I$$

Canonical Correlation Analysis:

maximize: $tr(U^T\Sigma_{XY}V)$

subject to: $U^T \Sigma_{YY} U = V^T \Sigma_{YY} V = I$

Deep Canonical Correlation Analysis

Same objective function as CCA:

$$\underset{v,u,w_x,w_y}{\operatorname{argmax}} corr(\boldsymbol{H}_x,\boldsymbol{H}_y)$$

- Linear projections maximizing correlation
- Orthogonal projections
- Unit variance of the projection vectors

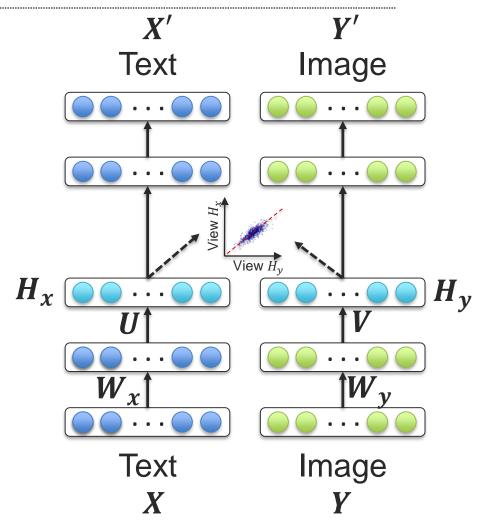
 H_{x} $V_{\text{iew }H_{y}}$ W_{x} W_{x} W_{y} W_{y} W

Andrew et al., ICML 2013

Deep Canonically Correlated Autoencoders (DCCAE)

Jointly optimize for DCCA and autoencoders loss functions

A trade-off between multi-view correlation and reconstruction error from individual views

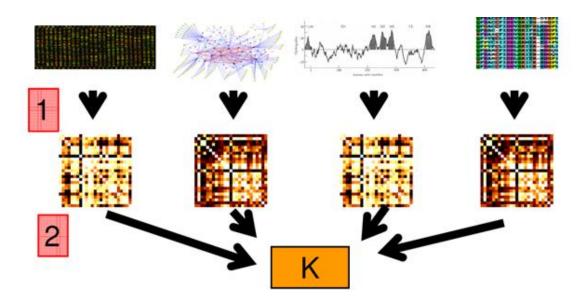


Wang et al., ICML 2015

Multimodal Fusion

Multiple Kernel Learning

- Pick a family of kernels for each modality and learn which kernels are important for the classification case
- Generalizes the idea of Support Vector Machines
- Works as well for unimodal and multimodal data, very little adaptation is needed



[Lanckriet 2004]

Multimodal Fusion for Sequential Data

Modality-private structure

Internal grouping of observations

Modality-shared structure

Interaction and synchrony

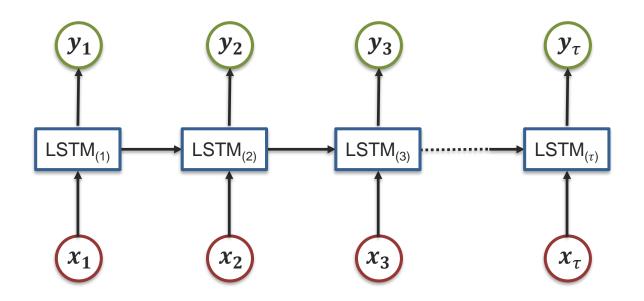
$$p(y|x^A, x^V; \boldsymbol{\theta}) = \sum_{\boldsymbol{h}^A, \boldsymbol{h}^V} p(y, \boldsymbol{h}^A, \boldsymbol{h}^V | x^A, x^V; \boldsymbol{\theta})$$

Multi-View **Hidden Conditional Random Field** the yellowdoo We saw

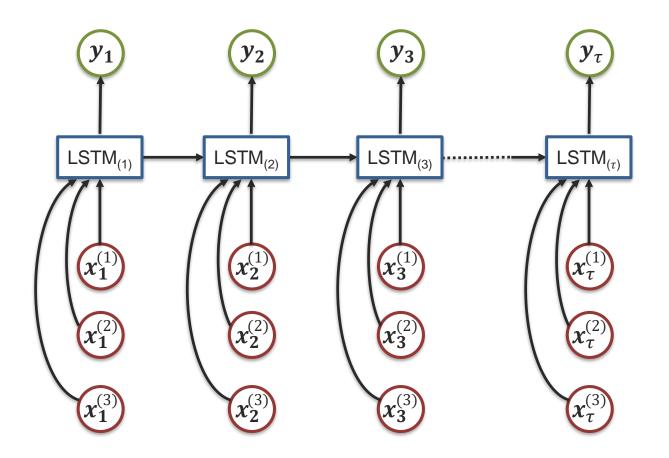
Approximate inference using loopy-belief

[Song, Morency and Davis, CVPR 2012]

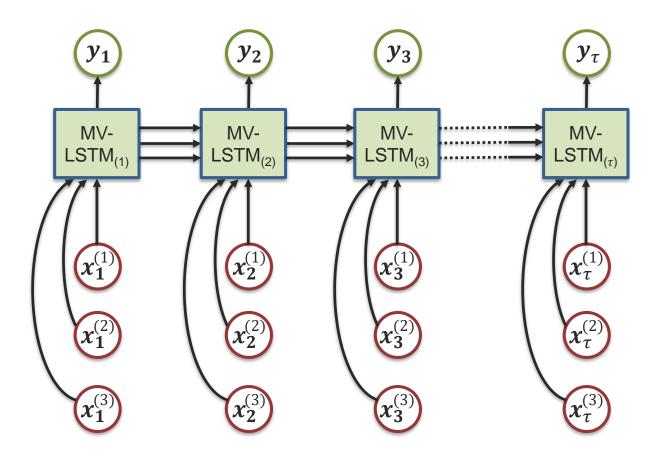
Sequence Modeling with LSTM



Multimodal Sequence Modeling – Early Fusion

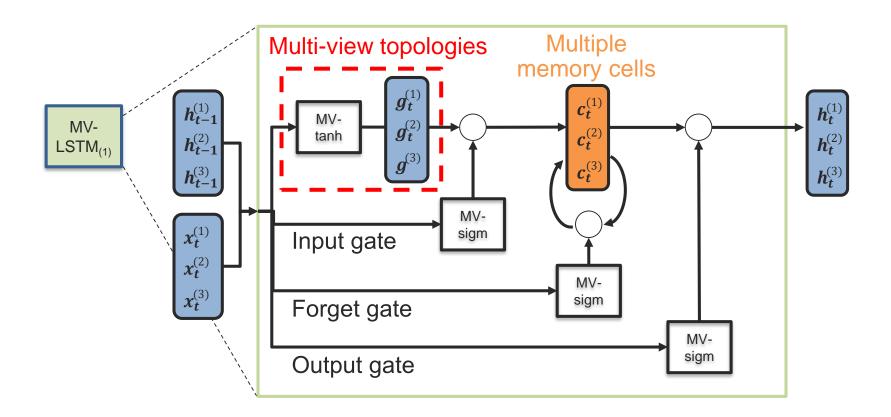


Multi-View Long Short-Term Memory (MV-LSTM)



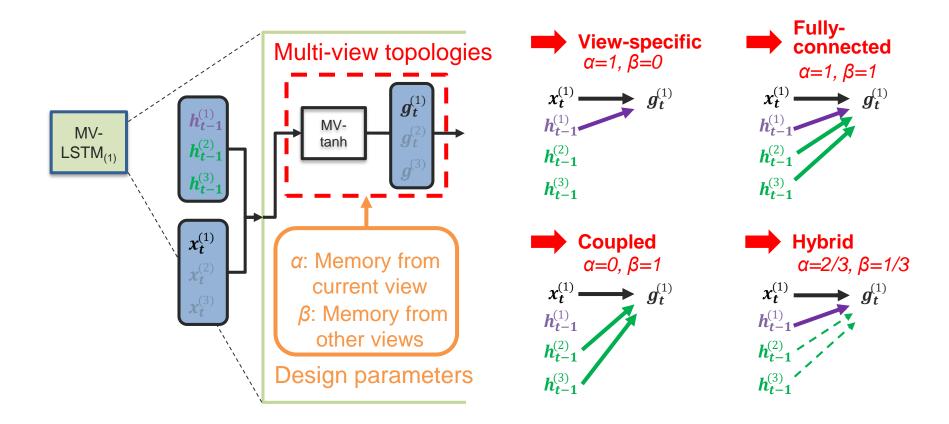
[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Multi-View Long Short-Term Memory



[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Topologies for Multi-View LSTM

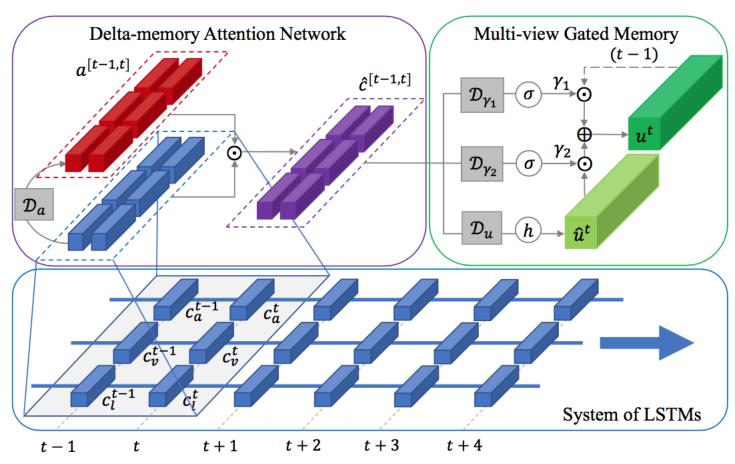


[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]

Memory Based

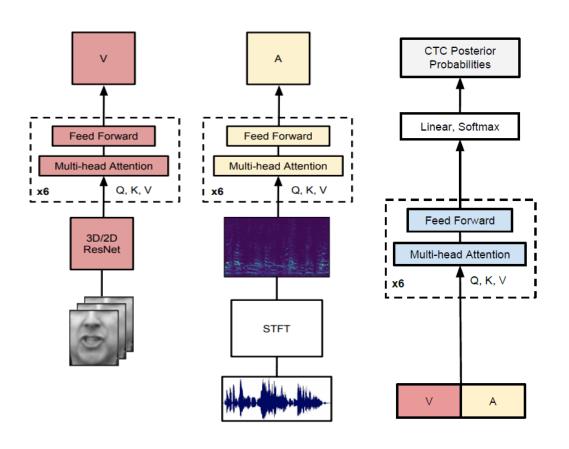
- A memory accumulates multimodal information over time.
- From the representations throughout a source network.
- No need to modify the structure of the source network, only attached the memory.

Memory Based

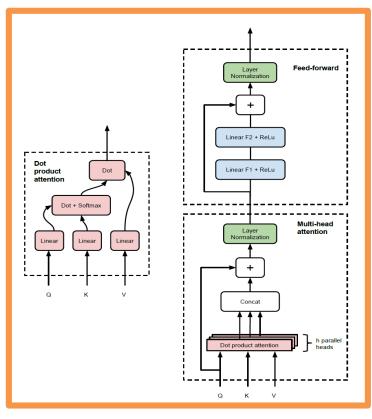


[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning, AAAI 2018]

Multi-Head Attention for AVSR



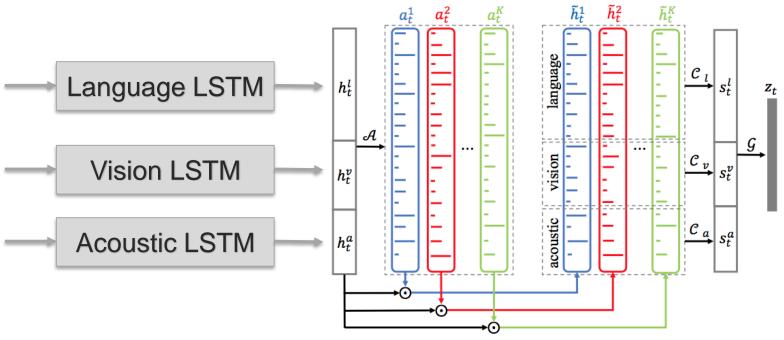
Multi-head Attention



Afouras, Triantafyllos, Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. "Deep audio-visual speech recognition." *arXiv preprint arXiv:1809.02108* (Sept 2018).

Fusion with Multiple Attentions

 Modeling Human Communication – Sentiment, Emotions, Speaker Traits



[Zadeh et al., Human Communication Decoder Network for Human Communication Comprehension, AAAI 2018]

Multimodal Machine Learning

Representation

Alignment

Fusion

Translation

Co-Learning

Multimodal Machine Learning: A Survey and Taxonomy

By Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

☑ 37 taxonomic classes

☑ 253 referenced citations