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CMU Course 11-777: Multimodal Machine Learning



Lecture Objectives

▪ What is Multimodal?

▪ Multimodal: Core technical challenges
▪ Representation learning, translation, alignment, 

fusion and co-learning

▪ Multimodal representation learning
▪ Joint and coordinated representations

▪ Multimodal autoencoder and tensor representation

▪ Deep canonical correlation analysis

▪ Fusion and temporal modeling
▪ Multi-view LSTM and memory-based fusion

▪ Fusion with multiple attentions
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What is 

Multimodal?



What is Multimodal?

Multimodal distribution

➢ Multiple modes, i.e., distinct “peaks” 

(local maxima) in the probability 

density function



What is Multimodal?

Sensory Modalities
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Multimodal Communicative Behaviors

▪ Gestures
▪ Head gestures
▪ Eye gestures
▪ Arm gestures

▪ Body language
▪ Body posture
▪ Proxemics

▪ Eye contact
▪ Head gaze
▪ Eye gaze

▪ Facial expressions
▪ FACS action units
▪ Smile, frowning

Verbal Visual

Vocal

▪ Lexicon
▪ Words

▪ Syntax
▪ Part-of-speech
▪ Dependencies

▪ Pragmatics
▪ Discourse acts

▪ Prosody
▪ Intonation
▪ Voice quality

▪ Vocal expressions
▪ Laughter, moans
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What is Multimodal?

Modality

Medium 

The way in which something happens or is experienced.

• Modality refers to a certain type of information and/or the 

representation format in which information is stored.

• Sensory modality: one of the primary forms of sensation, 

as vision or touch; channel of communication.

(“middle”)

A means or instrumentality for storing or communicating 

information; system of communication/transmission.

• Medium is the means whereby this information is 

delivered to the senses of the interpreter.



Multiple Communities and Modalities

Psychology Medical Speech Vision

Language Multimedia Robotics Learning



Examples of Modalities

❑ Natural language  (both spoken or written)

❑ Visual (from images or videos)

❑ Auditory (including voice, sounds and music)

❑ Haptics / touch

❑ Smell, taste and self-motion

❑ Physiological signals

▪ Electrocardiogram (ECG), skin conductance

❑ Other modalities

▪ Infrared images, depth images, fMRI
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Prior Research on “Multimodal”

1970 1980 1990 2000 2010

Four eras of multimodal research

➢ The “behavioral” era (1970s until late 1980s)

➢ The “computational” era (late 1980s until 2000)

➢ The “deep learning” era (2010s until …)

❖ Main focus of this tutorial

➢ The “interaction” era (2000 - 2010)
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The McGurk Effect (1976)

1970 1980 1990 2000 2010

Hearing lips and seeing voices – Nature

http://www.nature.com/articles/264746a0
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The McGurk Effect (1976)

1970 1980 1990 2000 2010

Hearing lips and seeing voices – Nature

http://www.nature.com/articles/264746a0
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➢ The “Computational” Era(Late 1980s until 2000)

1970 1980 1990 2000 2010

1) Audio-Visual Speech Recognition (AVSR) 
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Core Technical

Challenges
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Core Challenges in “Deep” Multimodal ML

Tadas Baltrusaitis, Chaitanya Ahuja, 
and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

These challenges are non-exclusive.

https://arxiv.org/abs/1705.09406
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Core Challenge 1: Representation

Modality 1 Modality 2

Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Joint representations:A
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Joint Multimodal Representation

“I like it!” Joyful tone

Tensed voice

“Wow!”

Joint Representation
(Multimodal Space)
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Joint Multimodal Representations
D
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• Bimodal Deep Belief Network

Image captioning

• Multimodal Deep Boltzmann Machine

[Ngiam et al., ICML 2011]

[Srivastava and Salahutdinov, NIPS 2012]

Audio-visual emotion recognition

• Deep Boltzmann Machine

[Kim et al., ICASSP 2013]

VerbalVisual

Multimodal Representation
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Multimodal Vector Space Arithmetic

[Kiros et al., Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models, 2014]
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Core Challenge 1: Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Modality 1 Modality 2

Representation

Modality 1 Modality 2

Repres 2Repres. 1

Joint representations:A Coordinated representations:B



22

Coordinated Representation: Deep CCA

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

𝑿
𝒀

𝒖
𝒗

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

Learn linear projections that are maximally correlated:

Andrew et al., ICML 2013
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Core Challenge 2: Alignment

Definition: Identify the direct relations between (sub)elements from two or 
more different modalities.

t1

t2

t3

tn

Modality 2Modality 1

t4

t5

tn

Fa
n

cy
 a

lg
o

ri
th

m

Explicit Alignment

The goal is to directly find correspondences 

between elements of different modalities

Implicit Alignment

Uses internally latent alignment of modalities in 

order to better solve a different problem

A

B



Temporal sequence alignment

Applications:

- Re-aligning asynchronous 

data

- Finding similar data across 

modalities (we can estimate 

the aligned cost)

- Event reconstruction from 

multiple sources



Alignment examples (multimodal)
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Implicit Alignment

Karpathy et al., Deep Fragment Embeddings for Bidirectional Image Sentence Mapping, 

https://arxiv.org/pdf/1406.5679.pdf
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Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a 
prediction task.

Model-Agnostic ApproachesA

Classifier

Modality 1

Modality 2

Classifier

Classifier

Modality 1

Modality 2

1) Early Fusion 2) Late Fusion
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Core Challenge 3: Fusion

Definition: To join information from two or more modalities to perform a 
prediction task.

Model-Based (Intermediate) ApproachesB

1) Deep neural networks

2) Kernel-based methods

3) Graphical models 𝒙𝟏
𝑨

ℎ1
𝐴 ℎ2

𝐴 ℎ3
𝐴 ℎ4

𝐴 ℎ5
𝐴

𝒙𝟐
𝑨 𝒙𝟑

𝑨 𝒙𝟒
𝑨 𝒙𝟓

𝑨

𝒙𝟏
𝑽

ℎ1
𝑉 ℎ2

𝑉 ℎ3
𝑉 ℎ4

𝑉 ℎ5
𝑉

𝒙𝟐
𝑽 𝒙𝟑

𝑽 𝒙𝟒
𝑽 𝒙𝟓

𝑽

y

Multiple kernel learning

Multi-View Hidden CRF
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Core Challenge 4: Translation

Definition: Process of changing data from one modality to another, where the 
translation relationship can often be open-ended or subjective.

Example-basedA Model-drivenB



Core Challenge 4 – Translation

Transcriptions

+

Audio streams

Visual gestures
(both speaker and 

listener gestures)

Marsella et al., Virtual character performance from speech, SIGGRAPH/Eurographics

Symposium on Computer Animation, 2013
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Core Challenge 5: Co-Learning

Definition: Transfer knowledge between modalities, including their 
representations and predictive models.

Modality 1

Prediction

Modality 2

Help during 
training
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Core Challenge 5: Co-Learning

ParallelA Non-ParallelB HybridC



33Input Modalities Language Visual
Acoustic

Big dog
on the 
beach

Prediction

1 2

𝑡2

𝑡3

𝑡𝑛

𝑡4

𝑡5

𝑡6

𝑡2

𝑡3

𝑡𝑛

𝑡1



Taxonomy of Multimodal Research

Representation
▪ Joint

o Neural networks

o Graphical models

o Sequential

▪ Coordinated

o Similarity

o Structured

Translation
▪ Example-based

o Retrieval

o Combination

▪ Model-based

o Grammar-based

o Encoder-decoder

o Online prediction

Alignment

▪ Explicit

o Unsupervised

o Supervised

▪ Implicit

o Graphical models

o Neural networks

Fusion

▪ Model agnostic

o Early fusion

o Late fusion

o Hybrid fusion

▪ Model-based

o Kernel-based

o Graphical models

o Neural networks

Co-learning

▪ Parallel data

o Co-training

o Transfer learning

▪ Non-parallel data

▪ Zero-shot learning

▪ Concept grounding

▪ Transfer learning

▪ Hybrid data

▪ Bridging

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

[ https://arxiv.org/abs/1705.09406 ]

https://arxiv.org/abs/1705.09406


Multimodal Applications

Tadas Baltrusaitis, Chaitanya Ahuja, and Louis-Philippe Morency, Multimodal Machine Learning: A Survey and Taxonomy

[ https://arxiv.org/abs/1705.09406 ]

https://arxiv.org/abs/1705.09406
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Multimodal 

Representations
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Core Challenge: Representation

Definition: Learning how to represent and summarize multimodal data in away 
that exploits the complementarity and redundancy.

Modality 1 Modality 2

Representation

Modality 1 Modality 2

Repres 2Repres. 1

Joint representations:A Coordinated representations:B



Deep Multimodal autoencoders

▪ A deep representation 

learning approach

▪ A bimodal auto-encoder

▪ Used for Audio-visual speech 

recognition

[Ngiam et al., Multimodal Deep Learning, 2011]



Deep Multimodal autoencoders - training

▪ Individual modalities can be 

pretrained

▪ RBMs

▪ Denoising Autoencoders

▪ To train the model to 

reconstruct the other modality

▪ Use both

▪ Remove audio

[Ngiam et al., Multimodal Deep Learning, 2011]



Deep Multimodal autoencoders - training

▪ Individual modalities can be 

pretrained

▪ RBMs

▪ Denoising Autoencoders

▪ To train the model to 

reconstruct the other modality

▪ Use both

▪ Remove audio

▪ Remove video

[Ngiam et al., Multimodal Deep Learning, 2011]
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Multimodal Encoder-Decoder

· · ·

· · ·

· · ·

· · ·

Text Image

···

𝒀𝑿

▪ Visual modality often 

encoded using CNN

▪ Language modality will 

be decoded using LSTM 

▪ A simple multilayer 

perceptron will be used 

to translate from visual 

(CNN) to language 

(LSTM)



Multimodal Joint Representation

▪ For supervised learning tasks

▪ Joining the unimodal 

representations:

▪ Simple concatenation

▪ Element-wise multiplication  

or summation

▪ Multilayer perceptron

▪ How to explicitly model    

both unimodal and      

bimodal interactions?

· · ·

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

𝒉𝒎
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Multimodal Sentiment Analysis

· · ·

· · ·

Text
𝑿

𝒉𝒙

softmax· · ·

Sentiment Intensity [-3,+3]

· · · 𝒉𝒎

Audio
𝒁

𝒉𝒛

· · ·

· · ·

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒎 = 𝒇 𝑾 ∙ 𝒉𝒙, 𝒉𝒚, 𝒉𝒛
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Unimodal, Bimodal and Trimodal Interactions

“This movie is fair”

Smile

Loud voice

Speaker’s behaviors Sentiment Intensity

U
n

im
o

d
al

?

“This movie is sick” Smile

“This movie is sick” Frown

“This movie is sick” Loud voice ?

B
im

o
d

al

“This movie is sick” Smile Loud voice

Tr
im

o
d

al

“This movie is fair” Smile Loud voice

“This movie is sick” ?

Resolves ambiguity

(bimodal interaction)

Still Ambiguous !

Different trimodal

interactions !

Ambiguous !

Unimodal cues

Ambiguous !
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=
𝒉𝒙 𝒉𝒙 ⊗𝒉𝒚
1 𝒉𝒚

Multimodal Tensor Fusion Network (TFN)

· · ·

· · ·

· · ·

· · ·

Text Image

· · · softmax

𝒀𝑿

e.g. Sentiment

𝒉𝒙 𝒉𝒚

1

Models both unimodal and 

bimodal interactions:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

[Zadeh, Jones and Morency, EMNLP 2017]

𝒉𝒎
Unimodal

Bimodal

Important !
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Multimodal Tensor Fusion Network (TFN)

Can be extended to three modalities:

𝒉𝒎 =
𝒉𝒙
1

⊗
𝒉𝒚
1

⊗
𝒉𝒛
1

[Zadeh, Jones and Morency, EMNLP 2017]

Explicitly models unimodal, 
bimodal and trimodal

interactions !
· · ·

· · ·

Audio
𝒁

· · ·

· · ·

Text
𝑿

𝒉𝒙 𝒉𝒛

· · ·

· · ·

Image
𝒀

𝒉𝒚

𝒉𝒛

𝒉𝒙

𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚
𝒉𝒙 ⊗𝒉𝒛

𝒉𝒛 ⊗𝒉𝒚

𝒉𝒙 ⊗𝒉𝒚 ⊗𝒉𝒛
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Experimental Results – MOSI Dataset

Improvement over State-Of-The-Art
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Multimodal VAE (MVAE)

[Wu, Mike, and Noah Goodman. “Multimodal Generative Models for Scalable Weakly-Supervised Learning.”,

NIPS 2018]

▪ Introduce a multimodal variational autoencoder (MVAE) with a new 

training paradigm that learns a joint distribution and is robust to 

missing data
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Multimodal VAE (MVAE)

[Wu, Mike, and Noah Goodman. “Multimodal Generative Models for Scalable Weakly-Supervised Learning.”,

NIPS 2018]

▪ Transform unimodal datasets into “multi-modal” problems by 

treating labels as a second modality

𝑧~𝑝(𝑧) 𝑧~𝑝(𝑧|𝑥2 = 5) 𝑧~𝑝(𝑧) 𝑧~𝑝(𝑧|𝑥2 = 𝑎𝑛𝑘𝑙𝑒 𝑏𝑜𝑜𝑡)
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Coordinated

Multimodal 

Representations
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Coordinated Multimodal Representations

· · ·

· · ·

· · ·

· · ·

Text Image

· · · · · ·

Similarity metric

(e.g., 

cosine 

distance)

Learn (unsupervised) two or more 

coordinated representations from 

multiple modalities. A loss function 

is defined to bring closer these 

multiple representations. 

𝒀𝑿



Coordinated Multimodal Embeddings

[Huang et al., Learning Deep Structured Semantic Models for Web Search using Clickthrough Data, 2013]
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Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

1 Learn two linear projections, one 

for each view, that are maximally 

correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

“canonical”: reduced to the simplest or clearest 

schema possible

projection of X

p
ro

je
c
ti
o
n

 o
f 
Y

𝑼 𝑽

· · · · · ·
𝑯𝒙 𝑯𝒚

= argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀
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Correlated Projection

1 Learn two linear projections, one for each view, 

that are maximally correlated:

𝒖∗, 𝒗∗ = argmax
𝒖,𝒗

𝑐𝑜𝑟𝑟 𝒖𝑻𝑿, 𝒗𝑻𝒀

𝑿
𝒀

𝒖
𝒗

Two views 𝑿,𝒀 where same instances have the same color
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Canonical Correlation Analysis

2

We want to learn multiple projection pairs 𝒖(𝑖)𝑿, 𝒗(𝑖)𝒀 :

We want these multiple projection pairs to be orthogonal 

(“canonical”) to each other:

𝒖(𝑖)
∗ , 𝒗(𝑖)

∗ = argmax
𝒖 𝑖 ,𝒗(𝑖)

𝑐𝑜𝑟𝑟 𝒖(𝑖)
𝑻 𝑿, 𝒗(𝑖)

𝑻 𝒀 ≈ 𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑖)

𝒖(𝑖)
𝑻 𝚺𝑿𝒀𝒗(𝑗) = 𝒖(𝑗)

𝑻 𝚺𝑿𝒀𝒗(𝑖) = 𝟎 for 𝑖 ≠ 𝑗

𝑼𝚺𝑿𝒀𝑽 = 𝑡𝑟(𝑼𝚺𝑿𝒀𝑽) where 𝑼 = [𝒖 1 , 𝒖 2 ,…, 𝒖 𝑘 ]

and 𝑽 = [𝒗 1 , 𝒗 2 ,…, 𝒗 𝑘 ]
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Canonical Correlation Analysis

3 Since this objective function is invariant to scaling, we 

can constraint the projections to have unit variance:

𝑼𝑻𝚺𝑿𝑿𝑼 = 𝑰 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰

𝑡𝑟(𝑼𝑻𝚺𝑿𝒀𝑽)maximize:

Canonical Correlation Analysis:

subject to: 𝑼𝑻𝚺𝒀𝒀𝑼 = 𝑽𝑻𝚺𝒀𝒀𝑽 = 𝑰
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Deep Canonical Correlation Analysis

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

Same objective function as CCA:

argmax
𝑽,𝑼,𝑾𝒙,𝑾𝒚

𝑐𝑜𝑟𝑟 𝑯𝒙, 𝑯𝒚

Andrew et al., ICML 2013

1
Linear projections 

maximizing correlation

2 Orthogonal projections

3
Unit variance of the 

projection vectors
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Deep Canonically Correlated Autoencoders (DCCAE)

· · · · · ·

Text Image
𝒀𝑿

𝑼 𝑽
· · · · · ·𝑯𝒙 𝑯𝒚

View 𝐻𝑦

V
ie

w
 𝐻

𝑥

· · · · · ·
𝑾𝒙 𝑾𝒚

· · ·

· · ·

· · ·

· · ·

Text Image
𝒀′𝑿′

Jointly optimize for DCCA and 

autoencoders loss functions

➢ A trade-off between multi-view 

correlation and reconstruction 

error from individual views

Wang et al., ICML 2015
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Multimodal Fusion



Multiple Kernel Learning

▪ Pick a family of kernels for each modality and learn which kernels are important for the 

classification case

▪ Generalizes the idea of Support Vector Machines

▪ Works as well for unimodal and multimodal data, very little adaptation is needed

[Lanckriet 2004]
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Multimodal Fusion for Sequential Data

𝒙𝟏
𝑨

ℎ1
𝐴 ℎ2

𝐴 ℎ3
𝐴 ℎ4

𝐴 ℎ5
𝐴

𝒙𝟐
𝑨 𝒙𝟑

𝑨 𝒙𝟒
𝑨 𝒙𝟓

𝑨

𝒙𝟏
𝑽

ℎ1
𝑉 ℎ2

𝑉 ℎ3
𝑉 ℎ4

𝑉 ℎ5
𝑉

𝒙𝟐
𝑽 𝒙𝟑

𝑽 𝒙𝟒
𝑽 𝒙𝟓

𝑽

We saw the yellowdog

Sentiment

y

➢ Approximate inference using loopy-belief

Modality-private structure

• Internal grouping of observations

Modality-shared structure

• Interaction and synchrony

𝑝 𝑦 𝒙𝑨, 𝒙𝑉; 𝜽) = ෍

𝒉𝑨,𝒉𝑽

𝑝 𝑦, 𝒉𝑨, 𝒉𝑽 𝒙𝑨, 𝒙𝑽; 𝜽

[Song, Morency and 

Davis, CVPR 2012]

Multi-View

Hidden Conditional Random Field
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Sequence Modeling with LSTM

𝒙𝟏

𝒚𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏
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Multimodal Sequence Modeling – Early Fusion

𝒙𝟏

𝒚𝟏

LSTM(1) LSTM(2) LSTM(3) LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏

(1) (1) (1) (1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(2) (2) (2) (2)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(3) (3) (3) (3)
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Multi-View Long Short-Term Memory (MV-LSTM)

𝒙𝟏

𝒚𝟏

MV-

LSTM(1)

MV-

LSTM(2)

MV-

LSTM(3)

MV-

LSTM(𝜏)

𝒙𝟐 𝒙𝟑 𝒙𝜏

𝒚𝟐 𝒚𝟑 𝒚𝜏

(1) (1) (1) (1)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(2) (2) (2) (2)

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝜏
(3) (3) (3) (3)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Multi-View Long Short-Term Memory

MV-

LSTM(1)

𝒙𝒕
(1)

𝒙𝒕
(2)

𝒙𝒕
(3)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒉𝒕
(1)

𝒉𝒕
(2)

𝒉𝒕
(3)

MV-

tanh

MV-

sigm

𝒄𝒕
(1)

𝒄𝒕
(2)

𝒄𝒕
(3)

MV-

sigm

MV-

sigm

Multiple 
memory cells

𝒈𝒕
(1)

𝒈𝒕
(2)

𝒈(3)

Multi-view topologies

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Topologies for Multi-View LSTM

𝒙𝒕
(1)

𝒙𝒕
(2)

𝒙𝒕
(3)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

MV-

tanh

𝒈𝒕
(1)

𝒈𝒕
(2)

𝒈(3)

Multi-view topologies

Design parameters

α: Memory from 

current view

β: Memory from 

other views

View-specific

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

α=1, β=0

𝒈𝒕
(1)

Coupled
α=0, β=1

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒈𝒕
(1)

Fully-
connected

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

α=1, β=1

𝒈𝒕
(1)

Hybrid
α=2/3, β=1/3

𝒙𝒕
(1)

𝒉𝒕−𝟏
(1)

𝒉𝒕−𝟏
(2)

𝒉𝒕−𝟏
(3)

𝒈𝒕
(1)

MV-

LSTM(1)

[Shyam, Morency, et al. Extending Long Short-Term Memory for Multi-View Structured Learning, ECCV, 2016]
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Memory Based

▪ A memory accumulates multimodal 

information over time. 

▪ From the representations throughout a 

source network.

▪ No need to modify the structure of the 

source network, only attached the 

memory. 
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Memory Based

[Zadeh et al., Memory Fusion Network for Multi-view Sequential Learning, AAAI 2018]



Multi-Head Attention for AVSR

Afouras, Triantafyllos, Joon Son Chung, Andrew Senior, Oriol Vinyals, and Andrew Zisserman. 

"Deep audio-visual speech recognition." arXiv preprint arXiv:1809.02108 (Sept 2018).

Multi-head Attention
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Fusion with Multiple Attentions 

▪ Modeling Human Communication – Sentiment, 

Emotions, Speaker Traits

Language LSTM

Vision LSTM

Acoustic LSTM

[Zadeh et al., Human Communication Decoder Network for Human Communication Comprehension, AAAI 2018]
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Multimodal Machine Learning

Tadas Baltrusaitis, Chaitanya Ahuja, 
and Louis-Philippe Morency

https://arxiv.org/abs/1705.09406

https://arxiv.org/abs/1705.09406

