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Are These Sentences OK?

* Jane went to the store.
* store to Jane went the.
* Jane went store.

* Jane goed to the store.
* [he store went to Jane.

* The food truck went to Jane.



. anguage Modeling: Calculating
the Probability of a Sentence

P(X) :HP(QZ‘Z ‘ 1‘1,...,21’)7;_1)
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Next Word Context

The big problem: How do we predict
Plx; |x1,...,2;_1)
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Review: Count-baseo
L anguage Models



Count-based Language
Models

* Count up the frequency and divide:
C(mi—n—l—h R 7332')
C(aji—n—l—la e 7xi—1)

* Add smoothing, to deal with zero counts:

P | Ti—n+1y-- s Tim1) =APyo(%i | Ticng1s- oo, Tim1)
—+ (1 — )\)P(.CEZ ‘ T1—n+2y - - - ,ZEi_l)

* Modified Kneser-Ney smoothing



A Refresher on Evaluation

* Log-likelihood:
LL(gtest) — Z lOgP(E)

EEgtest

* Per-word Log Likelihood:

1
WLL(gtest) —
ZEEEt@St ‘E| E€&est
* Per-word (Cross) Entropy:

1
H(Etest) —
* Perplexity:

Z —log, P(E)

ZEEgtest |E‘ EcEiest

PPl(Etest) = oH(Etest) — o=WLL(Etest)



What Can we Do w/ LMs?

e Score sentences:

Jane went to the store . — high
store to Jane went the . — low

(same as calculating loss for training)

e (3enerate sentences:

while didn't choose end-of-sentence symbol:
calculate probability
sample a new word from the probabillity distribution



Problems and Solutions?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

e Cannot condition on context wit

— solution: class based language models

N intervening words

Dr. Jane Smith  Dr. Gertrude Smith

— solution: skip-gram language models

* Cannot handle long-distance dependencies

for
for prog

tennis class he wanted to buy his own racquet

‘amming class he wanted to buy his own com

outer

— solution: cache, trigger, topic, syntactic models, etc.




An Alternative:
Featurized Log-Linear Models



An Alternative:
Featurized Models

* Calculate features of the context
* Based on the teatures, calculate probabilities

* Optimize feature weights using gradient descent,
etc.



Example:

Previous words: "giving a’

ce 25\ =0 D3 [2o

talk 02| wiadd 02 | woguing= 10 | s=| 1.0

gitt 0.1 0.1 2.0 2 D
hat \1.2/ \0.5/ \-1.2/ \0.6/
| | How likely How likely
Words we're How likely are they are they Total

predicting  arethey?  given prev.  given 2nd prev.  score
word is “a”? word is “giving”?




Softmax

* Convert scores into probabilities by taking the
exponent and normalizing (softmax)

1
68(507;|33;_n+1)

P(z; | ¢} — ‘
( ‘ z—n—l-l) 253 68(537;\35‘2:;4_1)
/gg\ /o.ooz\
-1 .O 0.003
a=| T. » P=| 0.329

2.2 0.444
0-6/ \0.090/



A Computation Graph View

giving a

(lookup2 | (lookupt |  bias  scores

b4
+ + =

b <
—

probs

softmaxj—E

Each vector is size of output vocabulary




A Note: "Lookup”

* Lookup can be viewed as “grabbing” a single
vector from a big matrix of word embeddings

num. words

[l Il LI IR LA

Vector 49999 9 9 99 <4

R L [ L T S T [ S T

" b4 OO OO
Slze L [ T T [ T = TS | | k 2

o Similarly, can be viewed as multiplying by a “one-

hot” vector
num. words /O\

[l Il LI IR LA

VeCtOr R R TR SIS TS S IS T 1

L [ TSRS TSR ] X

| b OO OO OO 0
SIZE I [ S SIS S \O/
h. 4h 4h b 4 4 4 4 4 4 4

e Former tends to be faste



Training a Moadel

* Reminder: to train, we calculate a “loss
function” (a measure of how bad our predictions
are), and move the parameters to reduce the loss

* The most common loss function for probabilistic
models is "negative log likelihood”

/o.ooz\
It element 3 0.003

(or zero-indexed, 2) p= Jlog — 1.112
IS the correct answer: \0_444/

0.090



Parameter Update

* Back propagation allows us to calculate the
derivative of the loss with respect to the parameters

o
96

* Simple stochastic gradient descent optimizes
parameters according to the following rule
94

0<—0—a—
< 0489



Choosing a Vocabulary



Unknown Words

e Necessity for UNK words
 We won't have all the words in the world in training data

e Larger vocabularies require more memory and
computation time

e« Common ways:
e Frequency threshold (usually UNK <= 1)

e Rank threshold



Evaluation and Vocabulary

* Important: the vocabulary must be the same over
models you compare

* Or more accurately, all models must be able to
generate the test set (it's OK if they can generate
more than the test set, but not less)

* e.9. Comparing a character-based model to a
word-based model is fair, but not vice-versa



| et’s try It out!
(loglin-1m.py)



What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— not solved yet &

* Cannot condition on context with intervening words
Dr. Jane Smith  Dr. Gertrude Smith

— solved! &

* Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &




Beyond Linear Models



| Inear Models can't Learn
Feature Combinations

students take tests— high teachers take tests — low
students write tests = low teachers write tests — high

 [hese can't be expressed by linear features

 \What can we do?

« Remember combinations as features (individual
scores for “students take”, “teachers write”)
— Feature space explosion!

e Neural nets



Neural Language Models

giving a * (See Bengio et al. 2004)
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Where is Strength Shared?
giving a

\
[Iookup)

/ L
Gookup] Similar output words

get similar rows in
in the softmax matrix
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What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— solved, and similar contexts as welll &

* Cannot condition on context with intervening words
Dr. Jane Smith  Dr. Gertrude Smith

— solved! &

* Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &




Let’'s Try it Out!
(nn-1m.pvV)



Tying Input/Output
Embeaddings

giving a
 We can share parameters
Cpick row] (pick row between the input and output
h embeddings (Press et al.
2 2016, inter alia)
b <
ﬁanh(
: ka‘h + D)

H
H

P«
W + = I{softmax)—»l
b/as scores probs

Want to try? Delete the input embeddings, and
iInstead pick a row from the softmax matrix.

LS




Optimizers



Standard SGD

 Reminder: Standard stochastic gradient descent does

gt — vet—lg(et—l)

Gradient of Loss

0y =01 — Qgt

Learning Rate

* [here are many other optimization options! (see
Ruder 2016 in references)



SGD With Momentum

* Remember gradients from past time steps

Ut = YUt—1 T NGt

Momentum Previous Momentum
Momentum

Conservation
Parameter

O = 011 — vy

- Intuition: Prevent instability resulting from sudden changes



Adagrad

* Adaptively reduce learning rate based on
accumulated variance of the gradients

Gy =Gi—1 4+ gt © gy

Squared Current Gradient

Ui
JG, + egt

— Small Constant

* Intuition: frequently updated parameters (e.g. common word
embeddings) should be updated less

- Problem: |earning rate continuously decreases, and training can
stall -- fixed by using rolling average in AdaDelta and RMSProp



Adam

Most standard optimization option in NLP and beyond

Considers rolling average of gradient, and momentum

my = Bimy—1 + (1 — B1)gy

Momentum

vy = BaUs—1 + (1 — 52)% © g+ Rolling Average of Gradient

Correction of bias early in training

A

Uz

Final update

1 —(81)
0y = 011

A

Ut

T I ()




Training Iricks



Shuffling the Training Data

* Stochastic gradient methods update the
parameters a little bit at a time

e What if we have the sentence “l love this
sentence so much!” at the end of the training
data 50 times”?

* Jo train correctly, we should randomly shuffle the
order at each time step



Simple Methods to Prevent Over-fitting

 Neural nets have tons of parameters: we want to prevent
them from over-fitting

* Early stopping:

e monitor performance on held-out development data
and stop training when it starts to get worse

 Learning rate decay:
e gradually reduce learning rate as training continues, or
e reduce learning rate when dev performance plateaus

- Patience:

- |learning can be unstable, so sometimes avoid
stopping or decay until the dev performance gets
worse ntimes




Which One to Use”

 Adam is usually fast to converge and stable

e But simple SGD tends to do very will in terms of
generalization (Wilson et al. 2017)

* You should use learning rate decay, (e.g. on Machine
translation results by Denkowski & Neubig 2017)

34 WMT German-English s WMT English-Finnish WMT Romanian-English
e 14 £ 27 |
32 - —
_ | —a . F/I—.—
413 = 26- |
30+ 0 fia
28 —a&— SGD - —&— SGD _ —a— S5GD

15 20 ) 10 12 14 4 6
Training Sentences (millions) Training Sentences (millions) Training Sentences (millions)



Dropout

(Srivastava+ 14)

* Neural nets have lots of parameters, and are prone
to overtfitting

* Dropout: randomly zero-out nodes in the hidden
layer with probabillity p at training time only

+ Because the number of nodes at training/test is difterent, scaling is
necessary:

« Standard dropout: scale by p at test time
 Inverted dropout: scale by 1/(1-p) at training time

* An alternative: DropConnect (\Wan+ 2013) instead zeros out
weights in the NN



Let’'s Try it Out!
(nn-1m-optim.py)




Efficiency Tricks:
Operation Batching



Efficiency Tricks:
Mini-patching

* On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

* Minibatching combines together smaller operations
INto one big one



Minibatching

Operations w/o Minibatching

le

tanh(ee® @ +

000
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Operations with Minibatching
X, X, X; > concat

tanh(eee®

wW

W
000
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b W

+ g) tanh(eee®

,~ | broadcast <— b
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Manual Mini-batching

Group together similar operations (e.g. loss calculations
for a single word) and execute them all together

* In the case of a feed-forward language model, each
word prediction in a sentence can be batched

e For recurrent neural nets, etc., more complicated
How this works depends on toolkit

* Most toolkits have require you to add an extra
dimension representing the batch size

* DyNet has special minibatch operations for lookup
and loss functions, everything else automatic



Mini-batched Code Example

# in_words 1s a tuple (word_1, word_2)

# out_ladbel 1s an output label

word_1 = E[in_words[0]]

word_2 = E[in_words[1]]

; scores_sym = W*dy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)

(a) Non-minibatched classification.

# in_words 1s a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
# out_labels is a list of output labels [label_1, label_2, ...]

s word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])

word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])

; scores_sym = W*dy.concatenate([word_1_batch, word_2_batch])+b

loss_sym = dy.sum_batches( dy.pickneglogsoftmax_batch(scores_sym, out_labels) )

(b) Minibatched classification.



Let’'s Try it Out!
(nn-1m-batch.py)




Automatic Optimization



Automatic Mini-batching!

Three input sequences,
different lengths.

* TensorFlow Fold, DyNet Autobatching (see Neubig et al.
2017)

e Jry it with the —dynet-autobatch command line option



Autobatching Usage

e for each minibatch:
e for each data point in mini-batch:
* define/add data
* sum losses
» forward (autobatch engine does magic!)
- backward

- update



Speed Improvements

Q%h W for calc  back graph mback calc mupdate gﬂlﬁiﬁfﬁh mfor calc © back graph ®back calc ®™update
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Table 1: Sentences/second on various training tasks for increasingly challenging batching scenarios.

Task CPU GPU

NOAUTO BYDEPTH BYAGENDA NOAUTO BYDEPTH BYAGENDA
BiLSTM 16.8 139 156 56.2 337 367
BiLSTM w/ char 15.7 93.8 132 43.2 183 275
TreeLSTM 50.2 348 357 760.5 672 661
Transition-Parsing 16.8 61.0 61.2 33.0 89.5 90.1




Code-level Optimization

* e.g. TorchScript provides a restricted representation
of a PyTorch module that can be run efficiently in C++

class MyCell(torch.nn.Module):
def __init__( ):
super (MyCell, 1 f).__dinit__()
.linear = toxch.nn.Lineax(4, 4)

def forward( , X, h):
new h = torch.tanh( .linear(x) + h)
retuxrn new h, new h

my_cell = MyCell() import torch
X, h = torch.rand(2, 4), torch.rxrand(3, 4) import __torch__.toxch.nn.modules.lineax
traced_cell = torch.jit.trace(my_cell, (x, h)) def forward(self,
print(traced_cell) input: Tensor,
traced_cell (x, h) h: Tensor) -> Tuple[Tensoxr, Tensor]:
0 = self.linear
weight = _BO.weighl
bias = _0.bias

1l = toxch.addmm(bias, input, toxch.t(weight), beta=1, alpha=1)
2 toxrch.tanh(toxch.add( 1, h, alpha=1))
return (2, 2)



A Case Study:
Regularizing and Optimizing LSTM
Language Models (Merity et al. 2017)




Regularizing and Optimizing LSTM
Language Models (Merity et al. 2017)

* Uses LSTMs as a backbone (discussed later)
* A number of tricks to improve stability and prevent overfitting:
* DropConnect regularization

« SGD w/ averaging triggered when model is close to
convergence

* Dropout on recurrent connections and embeddings

* Weight tying

* Independently tuned embedding and hidden layer sizes
* Regularization of activations of the network

e Strong baseline for language modeling, SOTA at the time
(without special model, just training methods)



Questions?



