CS11-747 Neural Networks for NLP

| anguage Modeling,
Efficiency/Training Tricks

Graham Neubig

P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2020/

https://phontron.com/class/nn4nlp2020/

Are These Sentences OK?

* Jane went to the store.
* store to Jane went the.
* Jane went store.

* Jane goed to the store.
* [he store went to Jane.

* The food truck went to Jane.

. anguage Modeling: Calculating
the Probability of a Sentence

P(X) :HP(QZ‘Z ‘ 1‘1,...,21’)7;_1)

AT

Next Word Context

The big problem: How do we predict
Plx; |x1,...,2;_1)
717

Covered
Concept Tally

arch-a20
arch-lslm 4
vg:tien Acdam 4
ASK-220250q A
greh-rnn
tas<dm
rag-drapous
Arch--rm 4
regg b e
are-lay i o
oreh-bistm A
arch-tranztarmer -
arch-coverage
task-taxnclass
arch selfs—
arch subyaord A
rami-bransler
Lrain-mll
o2z meprojection
task-secleb
arch-gru -
tashk-textoair 1
Archer =1 4
rombh-rrsembhe 4
pre-elmo
tz2sk-relztion 4
saarch-team
pre-vard2vac
erruct-crt 4
train-mtl 4
Lack Liese o
pre fasttoxt 4
atert-voe 4
gool-max
adu-train
sask condlm
sk cpaniab 4
cpbinm -5 A
adv-yun
erch-bilinear
reg-stoppirg
arck-copy +
init-glo-os
dler -aopne o
rAirn a4
task-alTment:
norm-layer -
tasislaxizon
DRSNCR
ADTM-Oranient |
Nondt-ramnta e o
paol-meon 4
tosk-oxtractive 4
055-5%4 1
adv-examp
saarch-v terci
reg-narm
ach Bagru
Lask-Cloge 1
1eg-decay
train-aztive
reg-pati=nce
pre-skipthough
reg-labecmooth -
L k- apilh 4
arrhresirual 4
arch-gnn 4
sear:h-yeecc!": 1
nocm-Lat
arch«treelstm
arch-patirg
ach-Dwnn A
Urain-paral 2l 4
svact-hmm A
reg-worddropous -
struct-crg
pré-Lse
% CTA
actve el 4
15 M s in
wich-aneigy
mete-arch
archeareonn

Pre-CAravac
arT v-rarh 4

L

Concept Count in All Papers

g

D «on BIC

"
a

1240

“4ul

Review: Count-baseo
L anguage Models

Count-based Language
Models

* Count up the frequency and divide:
C(mi—n—l—h R 7332')
C(aji—n—l—la e 7xi—1)

* Add smoothing, to deal with zero counts:

P | Ti—n+1y-- s Tim1) =APyo(%i | Ticng1s- oo, Tim1)
—+ (1 —)\)P(.CEZ ‘ T1—n+2y - - - ,ZEi_l)

* Modified Kneser-Ney smoothing

A Refresher on Evaluation

* Log-likelihood:
LL(gtest) — Z lOgP(E)

EEgtest

* Per-word Log Likelihood:

1
WLL(gtest) —
ZEEEt@St ‘E| E€&est
* Per-word (Cross) Entropy:

1
H(Etest) —
* Perplexity:

Z —log, P(E)

ZEEgtest |E‘ EcEiest

PPl(Etest) = oH(Etest) — o=WLL(Etest)

What Can we Do w/ LMs?

e Score sentences:

Jane went to the store . — high
store to Jane went the . — low

(same as calculating loss for training)

e (3enerate sentences:

while didn't choose end-of-sentence symbol:
calculate probability
sample a new word from the probabillity distribution

Problems and Solutions?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

e Cannot condition on context wit

— solution: class based language models

N intervening words

Dr. Jane Smith Dr. Gertrude Smith

— solution: skip-gram language models

* Cannot handle long-distance dependencies

for
for prog

tennis class he wanted to buy his own racquet

‘amming class he wanted to buy his own com

outer

— solution: cache, trigger, topic, syntactic models, etc.

An Alternative:
Featurized Log-Linear Models

An Alternative:
Featurized Models

* Calculate features of the context
* Based on the teatures, calculate probabilities

* Optimize feature weights using gradient descent,
etc.

Example:

Previous words: "giving a’

ce 25\ =0 D3 [2o

talk 02| wiadd 02 | woguing= 10 | s=| 1.0

gitt 0.1 0.1 2.0 2 D
hat \1.2/ \0.5/ \-1.2/ \0.6/
| | How likely How likely
Words we're How likely are they are they Total

predicting arethey? given prev. given 2nd prev. score
word is “a”? word is “giving”?

Softmax

* Convert scores into probabilities by taking the
exponent and normalizing (softmax)

1
68(507;|33;_n+1)

P(z; | ¢} — ‘
(‘ z—n—l-l) 253 68(537;\35‘2:;4_1)
/gg\ /o.ooz\
-1 .O 0.003
a=| T. » P=| 0.329

2.2 0.444
0-6/ \0.090/

A Computation Graph View

giving a

(lookup2 | (lookupt | bias scores

b4
+ + =

b <
—

probs

softmaxj—E

Each vector is size of output vocabulary

A Note: "Lookup”

* Lookup can be viewed as “grabbing” a single
vector from a big matrix of word embeddings

num. words

[l Il LI IR LA

Vector 49999 9 9 99 <4

R L [L T S T [S T

" b4 OO OO
Slze L [T T [T = TS | | k 2

o Similarly, can be viewed as multiplying by a “one-

hot” vector
num. words /O\

[l Il LI IR LA

VeCtOr R R TR SIS TS S IS T 1

L [TSRS TSR] X

| b OO OO OO 0
SIZE I [S SIS S \O/
h. 4h 4h b 4 4 4 4 4 4 4

e Former tends to be faste

Training a Moadel

* Reminder: to train, we calculate a “loss
function” (a measure of how bad our predictions
are), and move the parameters to reduce the loss

* The most common loss function for probabilistic
models is "negative log likelihood”

/o.ooz\
It element 3 0.003

(or zero-indexed, 2) p= Jlog — 1.112
IS the correct answer: \0_444/

0.090

Parameter Update

* Back propagation allows us to calculate the
derivative of the loss with respect to the parameters

o
96

* Simple stochastic gradient descent optimizes
parameters according to the following rule
94

0<—0—a—
< 0489

Choosing a Vocabulary

Unknown Words

e Necessity for UNK words
 We won't have all the words in the world in training data

e Larger vocabularies require more memory and
computation time

e« Common ways:
e Frequency threshold (usually UNK <= 1)

e Rank threshold

Evaluation and Vocabulary

* Important: the vocabulary must be the same over
models you compare

* Or more accurately, all models must be able to
generate the test set (it's OK if they can generate
more than the test set, but not less)

* e.9. Comparing a character-based model to a
word-based model is fair, but not vice-versa

| et’s try It out!
(loglin-1m.py)

What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— not solved yet &

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solved! &

* Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &

Beyond Linear Models

| Inear Models can't Learn
Feature Combinations

students take tests— high teachers take tests — low
students write tests = low teachers write tests — high

 [hese can't be expressed by linear features

 \What can we do?

« Remember combinations as features (individual
scores for “students take”, “teachers write”)
— Feature space explosion!

e Neural nets

Neural Language Models

giving a * (See Bengio et al. 2004)

\ /
(Iookup) Clookup]
g/

2 ﬁanh(

;: kV\/1*h + b+)
-

b <

W

POe®

r o~ r o~ —
b < b < R

b < b <
—_— (|
T+ @ = H softmax ’—» 2
b < b < D

bias scores probs

Where is Strength Shared?
giving a

\
[Iookup)

/ L
Gookup] Similar output words

get similar rows in
in the softmax matrix
@ -
tanh(Similar contexts get
@ kW#h + Db

/ similar hidden states

P =

b <

Word embeddings:
Similar input words |!
get similar vectors bias scores

b <

>4 -
» < < &
b < — {Softmax}
P -

,orbs

What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— solved, and similar contexts as welll &

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solved! &

* Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &

Let’'s Try it Out!
(nn-1m.pvV)

Tying Input/Output
Embeaddings

giving a
 We can share parameters
Cpick row] (pick row between the input and output
h embeddings (Press et al.
2 2016, inter alia)
b <
ﬁanh(
: ka‘h + D)

H
H

P«
W + = I{softmax)—»l
b/as scores probs

Want to try? Delete the input embeddings, and
iInstead pick a row from the softmax matrix.

LS

Optimizers

Standard SGD

 Reminder: Standard stochastic gradient descent does

gt — vet—lg(et—l)

Gradient of Loss

0y =01 — Qgt

Learning Rate

* [here are many other optimization options! (see
Ruder 2016 in references)

SGD With Momentum

* Remember gradients from past time steps

Ut = YUt—1 T NGt

Momentum Previous Momentum
Momentum

Conservation
Parameter

O = 011 — vy

- Intuition: Prevent instability resulting from sudden changes

Adagrad

* Adaptively reduce learning rate based on
accumulated variance of the gradients

Gy =Gi—1 4+ gt © gy

Squared Current Gradient

Ui
JG, + egt

— Small Constant

* Intuition: frequently updated parameters (e.g. common word
embeddings) should be updated less

- Problem: |earning rate continuously decreases, and training can
stall -- fixed by using rolling average in AdaDelta and RMSProp

Adam

Most standard optimization option in NLP and beyond

Considers rolling average of gradient, and momentum

my = Bimy—1 + (1 — B1)gy

Momentum

vy = BaUs—1 + (1 — 52)% © g+ Rolling Average of Gradient

Correction of bias early in training

A

Uz

Final update

1 —(81)
0y = 011

A

Ut

T I ()

Training Iricks

Shuffling the Training Data

* Stochastic gradient methods update the
parameters a little bit at a time

e What if we have the sentence “l love this
sentence so much!” at the end of the training
data 50 times”?

* Jo train correctly, we should randomly shuffle the
order at each time step

Simple Methods to Prevent Over-fitting

 Neural nets have tons of parameters: we want to prevent
them from over-fitting

* Early stopping:

e monitor performance on held-out development data
and stop training when it starts to get worse

 Learning rate decay:
e gradually reduce learning rate as training continues, or
e reduce learning rate when dev performance plateaus

- Patience:

- |learning can be unstable, so sometimes avoid
stopping or decay until the dev performance gets
worse ntimes

Which One to Use”

 Adam is usually fast to converge and stable

e But simple SGD tends to do very will in terms of
generalization (Wilson et al. 2017)

* You should use learning rate decay, (e.g. on Machine
translation results by Denkowski & Neubig 2017)

34 WMT German-English s WMT English-Finnish WMT Romanian-English
e 14 £ 27 |
32 - —
_ | —a . F/I—.—
413 = 26- |
30+ 0 fia
28 —a&— SGD - —&— SGD _ —a— S5GD

15 20) 10 12 14 4 6
Training Sentences (millions) Training Sentences (millions) Training Sentences (millions)

Dropout

(Srivastava+ 14)

* Neural nets have lots of parameters, and are prone
to overtfitting

* Dropout: randomly zero-out nodes in the hidden
layer with probabillity p at training time only

+ Because the number of nodes at training/test is difterent, scaling is
necessary:

« Standard dropout: scale by p at test time
 Inverted dropout: scale by 1/(1-p) at training time

* An alternative: DropConnect (\Wan+ 2013) instead zeros out
weights in the NN

Let’'s Try it Out!
(nn-1m-optim.py)

Efficiency Tricks:
Operation Batching

Efficiency Tricks:
Mini-patching

* On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

* Minibatching combines together smaller operations
INto one big one

Minibatching

Operations w/o Minibatching

le

tanh(ee® @ +

000

b

®
®

@

) tanh(ee®

Operations with Minibatching
X, X, X; > concat

tanh(eee®

wW

W
000

E::x

b W

+ g) tanh(eee®

,~ | broadcast <— b
B

Manual Mini-batching

Group together similar operations (e.g. loss calculations
for a single word) and execute them all together

* In the case of a feed-forward language model, each
word prediction in a sentence can be batched

e For recurrent neural nets, etc., more complicated
How this works depends on toolkit

* Most toolkits have require you to add an extra
dimension representing the batch size

* DyNet has special minibatch operations for lookup
and loss functions, everything else automatic

Mini-batched Code Example

in_words 1s a tuple (word_1, word_2)

out_ladbel 1s an output label

word_1 = E[in_words[0]]

word_2 = E[in_words[1]]

; scores_sym = W*dy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)

(a) Non-minibatched classification.

in_words 1s a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]
out_labels is a list of output labels [label_1, label_2, ...]

s word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])

word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])

; scores_sym = W*dy.concatenate([word_1_batch, word_2_batch])+b

loss_sym = dy.sum_batches(dy.pickneglogsoftmax_batch(scores_sym, out_labels))

(b) Minibatched classification.

Let’'s Try it Out!
(nn-1m-batch.py)

Automatic Optimization

Automatic Mini-batching!

Three input sequences,
different lengths.

* TensorFlow Fold, DyNet Autobatching (see Neubig et al.
2017)

e Jry it with the —dynet-autobatch command line option

Autobatching Usage

e for each minibatch:
e for each data point in mini-batch:
* define/add data
* sum losses
» forward (autobatch engine does magic!)
- backward

- update

Speed Improvements

Q%h W for calc back graph mback calc mupdate gﬂlﬁiﬁfﬁh mfor calc © back graph ®back calc ®™update

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 10C 12C 140 160 180 200

o (Mo I (),

9oeon HE | o — S00n B

e IE | | (e [

o (A 1N | —— a1 |

5 Szpm 5 | e §<0n | |

’ \Agenda I. - _ ’ \gzendal l-
_Q;468101214161820 _Q-Z'468101214161820

Table 1: Sentences/second on various training tasks for increasingly challenging batching scenarios.

Task CPU GPU

NOAUTO BYDEPTH BYAGENDA NOAUTO BYDEPTH BYAGENDA
BiLSTM 16.8 139 156 56.2 337 367
BiLSTM w/ char 15.7 93.8 132 43.2 183 275
TreeLSTM 50.2 348 357 760.5 672 661
Transition-Parsing 16.8 61.0 61.2 33.0 89.5 90.1

Code-level Optimization

* e.g. TorchScript provides a restricted representation
of a PyTorch module that can be run efficiently in C++

class MyCell(torch.nn.Module):
def __init__():
super (MyCell, 1 f).__dinit__()
.linear = toxch.nn.Lineax(4, 4)

def forward(, X, h):
new h = torch.tanh(.linear(x) + h)
retuxrn new h, new h

my_cell = MyCell() import torch
X, h = torch.rand(2, 4), torch.rxrand(3, 4) import __torch__.toxch.nn.modules.lineax
traced_cell = torch.jit.trace(my_cell, (x, h)) def forward(self,
print(traced_cell) input: Tensor,
traced_cell (x, h) h: Tensor) -> Tuple[Tensoxr, Tensor]:
0 = self.linear
weight = _BO.weighl
bias = _0.bias

1l = toxch.addmm(bias, input, toxch.t(weight), beta=1, alpha=1)
2 toxrch.tanh(toxch.add(1, h, alpha=1))
return (2, 2)

A Case Study:
Regularizing and Optimizing LSTM
Language Models (Merity et al. 2017)

Regularizing and Optimizing LSTM
Language Models (Merity et al. 2017)

* Uses LSTMs as a backbone (discussed later)
* A number of tricks to improve stability and prevent overfitting:
* DropConnect regularization

« SGD w/ averaging triggered when model is close to
convergence

* Dropout on recurrent connections and embeddings

* Weight tying

* Independently tuned embedding and hidden layer sizes
* Regularization of activations of the network

e Strong baseline for language modeling, SOTA at the time
(without special model, just training methods)

Questions?

