CS11-747 Neural Networks for NLP

Language Modeling, Efficiency/Training Tricks

Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site https://phontron.com/class/nn4nlp2020/

Are These Sentences OK?

- Jane went to the store.
- store to Jane went the.
- Jane went store.
- Jane goed to the store.
- The store went to Jane.
- The food truck went to Jane.

Language Modeling: Calculating the Probability of a Sentence

$$P(X) = \prod_{i=1}^{I} P(x_i \mid x_1, \dots, x_{i-1})$$
Next Word Context

The big problem: How do we predict

$$P(x_i \mid x_1, \ldots, x_{i-1})$$

Covered Concept Tally

Review: Count-based Language Models

Count-based Language Models

Count up the frequency and divide:

$$P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) := \frac{c(x_{i-n+1}, \dots, x_i)}{c(x_{i-n+1}, \dots, x_{i-1})}$$

Add smoothing, to deal with zero counts:

$$P(x_i \mid x_{i-n+1}, \dots, x_{i-1}) = \lambda P_{ML}(x_i \mid x_{i-n+1}, \dots, x_{i-1}) + (1 - \lambda)P(x_i \mid x_{1-n+2}, \dots, x_{i-1})$$

Modified Kneser-Ney smoothing

A Refresher on Evaluation

Log-likelihood:

$$LL(\mathcal{E}_{test}) = \sum_{E \in \mathcal{E}_{test}} \log P(E)$$

Per-word Log Likelihood:

$$WLL(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} \log P(E)$$

Per-word (Cross) Entropy:

$$H(\mathcal{E}_{test}) = \frac{1}{\sum_{E \in \mathcal{E}_{test}} |E|} \sum_{E \in \mathcal{E}_{test}} -\log_2 P(E)$$
 plexity:

• Perplexity:

$$ppl(\mathcal{E}_{test}) = 2^{H(\mathcal{E}_{test})} = e^{-WLL(\mathcal{E}_{test})}$$

What Can we Do w/ LMs?

Score sentences:

```
Jane went to the store . → high store to Jane went the . → low (same as calculating loss for training)
```

Generate sentences:

```
while didn't choose end-of-sentence symbol:calculate probabilitysample a new word from the probability distribution
```

Problems and Solutions?

Cannot share strength among similar words

she bought a car she bought a bicycle she purchased a car she purchased a bicycle

- → solution: class based language models
- Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

- → solution: skip-gram language models
- Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer

→ solution: cache, trigger, topic, syntactic models, etc.

An Alternative: Featurized Log-Linear Models

An Alternative: Featurized Models

- Calculate features of the context
- Based on the features, calculate probabilities
- Optimize feature weights using gradient descent, etc.

Example:

Previous words: "giving a"

the talk
$$b = \begin{pmatrix} 3.0 \\ 2.5 \\ -0.2 \\ 0.1 \\ 1.2 \end{pmatrix}$$
 $w_{1,a} = \begin{pmatrix} -6.0 \\ -5.1 \\ 0.2 \\ 0.1 \\ 0.5 \end{pmatrix}$ $w_{2,giving} = \begin{pmatrix} -0.2 \\ -0.3 \\ 1.0 \\ 2.0 \\ -1.2 \end{pmatrix}$ $s = \begin{pmatrix} -3.2 \\ -2.9 \\ 1.0 \\ 2.2 \\ 0.6 \end{pmatrix}$

Words we're How likely are they? predicting

How likely are they word is "a"?

How likely are they given prev. given 2nd prev. word is "giving"?

Total score

Softmax

 Convert scores into probabilities by taking the exponent and normalizing (softmax)

$$P(x_i \mid x_{i-n+1}^{i-1}) = \frac{e^{s(x_i \mid x_{i-n+1}^{i-1})}}{\sum_{\tilde{x}_i} e^{s(\tilde{x}_i \mid x_{i-n+1}^{i-1})}}$$

$$s = \begin{pmatrix} -3.2 \\ -2.9 \\ 1.0 \\ 2.2 \\ 0.6 \end{pmatrix} \longrightarrow p = \begin{pmatrix} 0.002 \\ 0.003 \\ 0.329 \\ 0.444 \\ 0.090 \end{pmatrix}$$

A Computation Graph View

Each vector is size of output vocabulary

A Note: "Lookup"

 Lookup can be viewed as "grabbing" a single vector from a big matrix of word embeddings

 Similarly, can be viewed as multiplying by a "onehot" vector

Former tends to be faster

Training a Model

- Reminder: to train, we calculate a "loss function" (a measure of how bad our predictions are), and move the parameters to reduce the loss
- The most common loss function for probabilistic models is "negative log likelihood"

If element 3 (or zero-indexed, 2) is the correct answer:

$$p = \begin{pmatrix} 0.002 \\ 0.003 \\ 0.329 \\ 0.444 \\ 0.090 \end{pmatrix} \rightarrow -\log \rightarrow 1.112$$

• •

Parameter Update

 Back propagation allows us to calculate the derivative of the loss with respect to the parameters

$$\frac{\partial \ell}{\partial \boldsymbol{\theta}}$$

 Simple stochastic gradient descent optimizes parameters according to the following rule

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \alpha \frac{\partial \ell}{\partial \boldsymbol{\theta}}$$

Choosing a Vocabulary

Unknown Words

- Necessity for UNK words
 - We won't have all the words in the world in training data
 - Larger vocabularies require more memory and computation time
- Common ways:
 - Frequency threshold (usually UNK <= 1)
 - Rank threshold

Evaluation and Vocabulary

- Important: the vocabulary must be the same over models you compare
- Or more accurately, all models must be able to generate the test set (it's OK if they can generate more than the test set, but not less)
 - e.g. Comparing a character-based model to a word-based model is fair, but not vice-versa

Let's try it out! (loglin-lm.py)

What Problems are Handled?

Cannot share strength among similar words

she bought a car she purchased a car she bought a bicycle she purchased a bicycle

- → not solved yet 😞
- Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

- → solved! e
- Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer

→ not solved yet 😞

Beyond Linear Models

Linear Models can't Learn Feature Combinations

```
students take tests → high teachers take tests → low students write tests → low teachers write tests → high
```

- These can't be expressed by linear features
- What can we do?
 - Remember combinations as features (individual scores for "students take", "teachers write")
 - → Feature space explosion!
 - Neural nets

Neural Language Models

Where is Strength Shared?

What Problems are Handled?

Cannot share strength among similar words

she bought a car she purchased a car

she bought a bicycle she purchased a bicycle

→ solved, and similar contexts as well! <=>

Cannot condition on context with intervening words

Dr. Jane Smith Dr. Gertrude Smith

- → solved! 🐸
- Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet for programming class he wanted to buy his own computer

→ not solved yet <</p>

Let's Try it Out! (nn-lm.py)

Tying Input/Output Embeddings

Want to try? Delete the input embeddings, and instead pick a row from the softmax matrix.

Optimizers

Standard SGD

Reminder: Standard stochastic gradient descent does

$$g_t = \nabla_{\theta_{t-1}} \ell(\theta_{t-1})$$
Gradient of Loss

$$\theta_t = \theta_{t-1} - \underline{\eta}g_t$$
 Learning Rate

 There are many other optimization options! (see Ruder 2016 in references)

SGD With Momentum

Remember gradients from past time steps

$$v_t = \gamma v_{t-1} + \eta g_t$$

Momentum

Previous Momentum

Momentum
Conservation
Parameter

$$\theta_t = \theta_{t-1} - v_t$$

Intuition: Prevent instability resulting from sudden changes

Adagrad

 Adaptively reduce learning rate based on accumulated variance of the gradients

$$G_t = G_{t-1} + g_t \odot g_t$$

Squared Current Gradient

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{G_t + \epsilon}} g_t$$
 - Small Constant

- Intuition: frequently updated parameters (e.g. common word embeddings) should be updated less
- Problem: learning rate continuously decreases, and training can stall -- fixed by using rolling average in AdaDelta and RMSProp

Adam

- Most standard optimization option in NLP and beyond
- Considers rolling average of gradient, and momentum

$$m_t=\beta_1 m_{t-1}+(1-\beta_1)g_t$$
 Momentum
$$v_t=\beta_2 v_{t-1}+(1-\beta_2)g_t\odot g_t$$
 Rolling Average of Gradient

Correction of bias early in training

$$\hat{m}_t = \frac{m_t}{1 - (\beta_1)^t} \quad \hat{v}_t = \frac{v_t}{1 - (\beta_2)^t}$$

Final update

$$\theta_t = \theta_{t-1} - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Training Tricks

Shuffling the Training Data

- Stochastic gradient methods update the parameters a little bit at a time
 - What if we have the sentence "I love this sentence so much!" at the end of the training data 50 times?
- To train correctly, we should randomly shuffle the order at each time step

Simple Methods to Prevent Over-fitting

 Neural nets have tons of parameters: we want to prevent them from over-fitting

Early stopping:

 monitor performance on held-out development data and stop training when it starts to get worse

Learning rate decay:

- gradually reduce learning rate as training continues, or
- reduce learning rate when dev performance plateaus

· Patience:

 learning can be unstable, so sometimes avoid stopping or decay until the dev performance gets worse n times

Which One to Use?

- Adam is usually fast to converge and stable
- But simple SGD tends to do very will in terms of generalization (Wilson et al. 2017)
- You should use learning rate decay, (e.g. on Machine translation results by Denkowski & Neubig 2017)

Dropout

(Srivastava+ 14)

- Neural nets have lots of parameters, and are prone to overfitting
- Dropout: randomly zero-out nodes in the hidden layer with probability p at training time only

- Because the number of nodes at training/test is different, scaling is necessary:
 - Standard dropout: scale by p at test time
 - Inverted dropout: scale by 1/(1-p) at training time
- An alternative: DropConnect (Wan+ 2013) instead zeros out weights in the NN

Let's Try it Out! (nn-lm-optim.py)

Efficiency Tricks: Operation Batching

Efficiency Tricks: Mini-batching

- On modern hardware 10 operations of size 1 is much slower than 1 operation of size 10
- Minibatching combines together smaller operations into one big one

Minibatching

Operations w/o Minibatching

Operations with Minibatching

Manual Mini-batching

- Group together similar operations (e.g. loss calculations for a single word) and execute them all together
 - In the case of a feed-forward language model, each word prediction in a sentence can be batched
 - For recurrent neural nets, etc., more complicated
- How this works depends on toolkit
 - Most toolkits have require you to add an extra dimension representing the batch size
 - DyNet has special minibatch operations for lookup and loss functions, everything else automatic

Mini-batched Code Example

```
# in_words is a tuple (word_1, word_2)

# out_label is an output label

word_1 = E[in_words[0]]

word_2 = E[in_words[1]]

scores_sym = W*dy.concatenate([word_1, word_2])+b

loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)
```

(a) Non-minibatched classification.

```
# in_words is a list [(word_{1,1}, word_{1,2}), (word_{2,1}, word_{2,2}), ...]

# out_labels is a list of output labels [label_1, label_2, ...]

word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])

word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])

scores_sym = W*dy.concatenate([word_1_batch, word_2_batch])+b

loss_sym = dy.sum_batches( dy.pickneglogsoftmax_batch(scores_sym, out_labels) )
```

Let's Try it Out! (nn-lm-batch.py)

Automatic Optimization

Automatic Mini-batching!

- TensorFlow Fold, DyNet Autobatching (see Neubig et al. 2017)
- Try it with the -dynet-autobatch command line option

Autobatching Usage

- for each minibatch:
 - for each data point in mini-batch:
 - define/add data
 - sum losses
 - forward (autobatch engine does magic!)
 - · backward
 - update

Speed Improvements

Table 1: Sentences/second on various training tasks for increasingly challenging batching scenarios.

Task		CPU			GPU	
	NoAuto	BYDEPTH	BYAGENDA	NoAuto	$\mathbf{B}\mathbf{Y}\mathbf{D}\mathbf{E}\mathbf{P}\mathbf{T}\mathbf{H}$	BYAGENDA
BiLSTM	16.8	139	156	56.2	337	367
BiLSTM w/ char	15.7	93.8	132	43.2	183	275
TreeLSTM	50.2	348	357	76.5	672	661
Transition-Parsing	16.8	61.0	61.2	33.0	89.5	90.1

Code-level Optimization

 e.g. TorchScript provides a restricted representation of a PyTorch module that can be run efficiently in C++

```
class MyCell(torch.nn.Module):
    def __init__(self):
        super(MyCell, self).__init__()
        self.linear = torch.nn.Linear(4, 4)
    def forward(self, x, h):
        new h = torch.tanh(self.linear(x) + h)
       return new_h, new_h
                                              import __torch__
my_cell = MyCell()
x, h = torch.rand(3, 4), torch.rand(3, 4)
                                              import __torch__.torch.nn.modules.linear
traced_cell = torch.jit.trace(my_cell, (x, h)) def forward(self,
print(traced_cell)
                                                  input: Tensor,
traced_cell(x, h)
                                                  h: Tensor) -> Tuple[Tensor, Tensor]:
                                                0 = self.linear
                                                weight = _0.weight
                                                bias = 0.bias
                                                _1 = torch.addmm(bias, input, torch.t(weight), beta=1, alpha=1)
                                                _2 = torch.tanh(torch.add(_1, h, alpha=1))
                                                return (_2, _2)
```

A Case Study: Regularizing and Optimizing LSTM Language Models (Merity et al. 2017)

Regularizing and Optimizing LSTM Language Models (Merity et al. 2017)

- Uses LSTMs as a backbone (discussed later)
- A number of tricks to improve stability and prevent overfitting:
 - DropConnect regularization
 - SGD w/ averaging triggered when model is close to convergence
 - Dropout on recurrent connections and embeddings
 - Weight tying
 - Independently tuned embedding and hidden layer sizes
 - Regularization of activations of the network
- Strong baseline for language modeling, SOTA at the time (without special model, just training methods)

Questions?