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An Example Prediction Problem:
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how does our machine to do this

task??



Continuous Bag of Words (CBOW)
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Continuous Bag of Words (CBOW)

| hate this movie e One of the simplest
methods

(oowp) (lookup) (lookup) (leok®) . piccrete symbols to

continuous vectors
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Deep CBOW

hate this movie « More linear

,, ,, ,, transformations followed
:: + :: + 5 by activation functions
S % o (Multilayer Perceptron,
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What's the Use of the "Deep”

- Multiple MLP layers allow us easily to learn feature
combinations (a node in the second layer might be
“feature 1 AND feature 5 are active”)

. €e.g. capture things such as "not” AND “hate”

- BUT! Cannot handle “not hate”



Handling Combinations



Bag of n-grams

I hate this movie

bias scores

[softmax)

* A contiguous sequence of words
» (Concatenate word vectors



Why Bag of n-grams?

Francois Chollet & @fchollet - 2 Nov 2016 W
: We are releasing an open dataset for theorem proving, HolStep:

openreview.net/forum?id=ryuxY... - can you beat our 83% accuracy baseline?

35 2 ) B ) 123 ~

- Allow us to capture

4% Hal Daumé Ill @haldaume3 - 2 Nov 2016
i

Com bl natlon featu reS |n @.g .@fchollet sure, I'll play. 85%, took me about an hour. (totally possible | did

something wrong in preprocessing though!)

a simple way “don't
love™, “not the best”

- Decent baseline and
works pretty well




What Problems
w/ Bag of n-grams?

- Same as before: parameter explosion

- No sharing between similar words/n-grams

- Lose the global sequence order



What Problems
w/ Bag of n-grams?

- Same as before: parameter explosion

- No sharing between similar words/n-grams

- Lose the global sequence order

[ Other solutions? ]




Neural Sequence Models
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Neural Sequence Models

Sequence of

words —_—

(characters)

Composition
Function

Most of NLP tasks - Sequence
representation learning problem




Neural Sequence Models

Sequence of

words —_—

(characters)

Composition
Function

char: I-m-p-o-s-s-i-b-l-e

word: |-love-this-movie



Neural Sequence Models
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Neural Sequence Models
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Convolutional Neural Networks



Definition of Convolution

Convolution --> mathematical operation
» Continuous
(f *g)(t) = / f(t—71)g(T)dr

 Discrete

(f xg)|n] = Z f[n — m]g[m]

n=—M



Definition of Convolution

Convolution --> mathematical operation

 (Continuous
(f*xg)(t) = / f(t —7)g(T)dr

 Discrete

4 )
M

(fxg)ln]= ) _ flnlglm]

\ m—=—M Y

) -




Intuitive Understanding

(fxg)nl= > flnlglm]

m—=—NM

0 |2, 11 Input: feature vector

Filter: learnable param.

Output: hidden vector




Priori Entailed by CNNs
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Priori Entailed by CNNs
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Local bias:
L] - Different words could
interact with their
1 neighbors




Priori Entailed by CNNs

(fxg)nl= > flnlglm]

W1 Wo W3 W4 W5 Wg W7

0

2

m—=—NM

1

2

1

Local bias:

Different words could
interact with their neighbors



Priori Entailed by CNNs

0

2

Parameter sharing:

The parameters of

composition function
are the same.



Basics of CNNs



Concept: 2d Convolution

(Frgfel= 3~ Fiulglm

m=—NM

* Deal with 2-dimension signal, i.e., image



Concept: 2d Convolution

Fegliel= 5 Folglm
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Concept: 2d Convolution

Fegliel= 5 Folglm

m=—M
Input (zero-padding) (5x5) Filter W (3x3) Output (3x3)
el 4t wi::] of::]
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Concept: Stride

Stride: the number of units shifts over the input
matrix.



Concept: Stride

Stride: the number of units shifts over the input

matrix.
Input (zero-padding) (5x5) Filter W (3x3) Output (3x3)
el ) wlt] o[ 3]

I 0 0 0 0 1 ] 1 1

2 1 i 2 l 0 ] -1 0

| 1 2 2 0 0 ] -1 |




Concept: Stride

Stride: the number of units shifts over the input

matyriv

Input (zero-padding) (7x7) Filter W (3x3) Output (3x3)
x[::] wilz,:] of::]
B [ (RO S RGPS SERE (I l I I -2
0 I D RdE 0 i . 0 |l-11]] 0O
ol 2 | | 2 l 0 0| -1 |
0 ] | 2 12 8 .



Concept: Padding

Padding: dealing with the units at the boundary
of 1nput vector.

0 2 1 2@




Concept: Padding

Padding: dealing with the units at the boundary
of 1nput vector.

0 2




Three Types of Convolutions
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Three Types of Convolutions
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Concept: Multiple Filters

Motivation: each filter represents a unique feature of
the convolution window.




Concept: Pooling

- Pooling is an aggregation operation, aiming to select

iInformative features



Concept: Pooling

- Pooling is an aggregation operation, aiming to select
informative features

- Max pooling: “Did you see this feature anywhere in the
range?” (most common)

- Average pooling: "How prevalent is this feature over the
entire range”

- k-Max pooling: “Did you see this feature up to k times?”

- Dynamic pooling: "Did you see this feature in the
beginning? In the middle? In the end?”



Concept: Pooling
Max pooling:

0 -1 8 6 | ~2 8



Concept: Pooling
Max pooling:
Mean pooling:
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Concept: Pooling
Max pooling:

0 -1 8 6 1 — .
Mean pooling:
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K-max pooling
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Concept: Pooling
Max pooling:

0 -1 8 6 1 — .
Mean pooling:

0 -1 8 6 | ~2 2

K-max pooling

0 -1 8 6 1 2 8

Dynamic pooling:

0 Ll 8 6 1 - U




Case Study:
Convolutional Networks for Text
Classification (Kim 2015)



CNNs for Text Classification
(Kim 2015)

. Task: sentiment classification

- |nput: a sentence

- Output: a class label (positive/negative)



CNNSs for Text Classification
(Kim 2015)

. Task: sentiment classification

- |nput: a sentence

- Output: a class label (positive/negative)

. Model:

- Embedding layer
- Multi-Channel CNN layer

- Pooling layer/Output layer
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Embedding Layer

_— = =  Build a look-up table (pre-

/ : :
: I trained? Fine-tuned?)
|
| . L
| :  Discrete > distributed
I
| N N (RIs U (i I
I
love =N IFEN NN N I
I movie | 2 (|2 || 1 |[0 |0 I _______
very [ IR B I I / ] \
I . R I I |l gurf.'ad hl'.T c]: I.'uf.:;nl-: July ‘
I 2 P S N : : "
I I ) 1 0 {l 2 0 I
I
I I I [ { ! 1 SO EEEEEES I
I I I 0 3 4] [} & I I
I l [ 1 | i 4 ! I
l ' D T — — /

~___’



Conv. Layer
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Conv. Layer
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Conv. Layer
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Conv. Layer
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Conv. Layer
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Pooling Layer

Max-pooling
Concatenate




Output Layer
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- MLP layer
- Dropout

.  Softmax



CNN Variants



Priori Entailed by CNNs
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Priori Entailed by CNNs

W1 Wo W3 W4 W5 Wg W7

o
f 0 2 1 2 1

fxg L

i How to handle long-term )

. dependencies? )

 Local bias

« Parameter sharing 'How to handle different types\

.. .o
. of compositionality” )




Priori Entailed by CNNs

[ Advantage ]

 Priori |

-
\

| Limitation |




CNN Variants

Locality Bias

/

- Long-term dependency
- Increase receptive fields (dilated)

- Complicated Interaction

™~

. dynamic filters Sharing
Parameters



Dilated Convolution
(e.g. Kalchbrenner et al. 2016)

- Long-term dependency with less layers
—»sentence class

\ (classification)

next char
(language
modeling)

| word class
(tagging)
m




Dynamic Filter CNN
(e.g. Brabandere et al. 2016)

- Parameters of filters are static, failing to capture rich

interaction patterns.

- Filters are generated dynamically conditioned on an

input. O——— 3

Filter-generating
network

Input A  ——»

A

Input

\j E :
Input B >®—> Output



Common Applications



CNN Applications

- Word-level CNNs

Basic unit: word
Learn the representation of a sentence

Phrasal patterns

- Char-level CNNs

Basic unit: character
Learn the representation of a word

Extract morphological patters



CNN Applications

- Word-level CNN

. Sentence representation



NLP (Almost) from Scratch
(Collobert et al.2011)

Input Sentence

Text The cat sat on the mai

Featore:1 o Wy wp o wh = elvis @omarsar0 - 201857812H v
: = = a |CML 2018 Test of Time Award goes to a famous paper by Collobert
Feature K 2 w¥ wk wh 2 and Weston (2008). The paper is entitled "A Unified Architecture for
v Natural Language Processing: Deep Neural Networks with
Lookup Table . Multitask Learning". This is an excellent read for beginners.
LTy: AN ronan.collobert.com/pub/matos/2008...
: O 1 T O 1 q
LTy AAA _
e g
Convolution s -4
- l”.] ‘H : : ]
f gl - One of the most important
v

Max Owver Time

) | . Proposed as early as 2008

w
Linear »
M? xg "N~

2
HardTanh L 4
_ S Aans

3
Linear ¥

M3 % 5 N




CNN Applications

- Word-level CNN

- Char-level CNN

- Text Classification



CNN-RNN-CRF for Tagging
(Ma et al. 2016)

. A classic framework and de-facto standard for
tagging

- Char-CNN is used to learn word representations

(extract morphological information).
. Complementarity




Structured Convolution



Why Structured Convolution?

The man ate the eggqg.



Why Structured Convolution?

The man ate the eggqg.

ﬂ vanilla
CNNs



Why Structured Convolution?

The man ate the eggqg.

ﬂ vanilla . Some convolutional
CNNs operations are not
necessary

. €.g. noun-verb pairs very
informative, but not captured

/ \/ \/Q by normal CNNs
/ ‘\/ %‘d—# \

_,/'

The mein ate the egg



Why Structured Convolution?

. Some convolutional

The man ate the egg. operations are not
necessary

- €.g. houn-verb pairs very
informative, but not captured
by normal CNNs

Language has structure,
would like it to localize
) features



Why Structured Convolution?

. Some convolutional

The man ate the egg. operations are not
necessary

- €.g. houn-verb pairs very
informative, but not captured
by normal CNNs

- Language has structure,
would like it to localize
(D features

-\.-". I,I'.- y :__ - .-!,, g"" = B h
piy ey g ] (e )
o b i b

The ML ate Lthe egg The “StrUCture” prOVideS Stronger prior!



Tree-structured Convolution
(Mou et al. 2014, Ma et al. 2015)

. Convolve over parents, grandparents, siblings

; ﬁ max fully fully
' pooling connected | |connected
£ — — o — [snftmax ]

Dynamic Hidden  Output

Vector representation !
pooling

. Tree-based
and coding

convolution




Graph Convolution
(e.g. Marcheggiani et al. 2017)

» Convolution is shaped by graph
structure

* For example, dependency
tree is a graph with T 1

ReLU(X-) ReLU(X-) ReLU(X-) ReLU(Z-) |
1) Self-loop connection ¢
2) Dependency connections
3) Reverse connections




Summary



Neural Sequence Models

Sequence of

words —_—

(characters)

Composition
Function

CBOW —

Bag of n-grams
CNNs
RNNs

Transformer
GraphNNs



Neural Sequence Models

Sequence of

words  —

(characters)

Composition
Function

How do we make the choices of
different neural sequence models?



Understand the design philosophy
of a mode|

- Inductive bias: the set of assumptions that the
learner uses to predict outputs given inputs that it
has not encountered (from wikipedia)

- Structural bias: a set of prior knowledge
incorporated into your model design



Structural Bias

- Structural bias: a set of prior knowledge
incorporated into your model design

¢ LOCa| |ty ;A?sf?ﬁgw
LOC8| W1 W2 W3 |Wy| Wy Weg W7
({g ffﬁﬁ%ﬁ{t\ \
Non-local e Ay

W1 Wo W3 | W4 W5 Wg W7



Structural Bias

- Structural bias: a set of prior knowledge

incorporated into your model design
« Topological structure

Sequential

Tree @

Graph



What inductive bias does a neural
component entail?

Locality Bias

Topological Structure

Local

Non-local

Seq.

Tree

Graph




What inductive bias does a neural
component entail?

Locality Bias Local

Topological Structure | Seq.

/’E{
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RNN CNN



What inductive bias does a neural
component entail?

Locality Bias

Topological Structure

The

MAT ate the

Structured CNN

Non-local

Tree

egg

""-\._.H- A




What inductive bias does a neural

component entail?

Locality Bias

Topological Structure

Non-local

Graph




What inductive bias does a neural

component entail?

Locality Bias

Topological Structure

Non-local

Seq.




What inductive bias does a neural

component entail?

Locality Bias

Topological Structure

Local

Non-local

Graph




Questions?



