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how does our machine to do this 

task?
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Continuous Bag of Words (CBOW)

I hate this movie
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• One of the simplest 

methods

• Discrete symbols to 

continuous vectors

• Average all vectors



Deep CBOW

I hate this movie

+

bias

=

scores

W

+ + +

=
tanh(
  W1*h + b1)

tanh(
  W2*h + b2)

• More linear 

transformations followed 

by activation functions 

(Multilayer Perceptron, 

MLP)



What’s the Use of the “Deep”

• Multiple MLP layers allow us easily to learn feature 
combinations (a node in the second layer might be 
“feature 1 AND feature 5 are active”)

• e.g. capture things such as “not” AND “hate”

• BUT! Cannot handle “not hate”



Handling Combinations



Bag of n-grams
I hate this movie

bias

sum(                                                        ) = 

scores

softmax

probs

• A contiguous sequence of words
• Concatenate word vectors



Why Bag of n-grams?

• Allow us to capture 
combination features in 
a simple way “don’t 
love”, “not the best”

• Decent baseline and 
works pretty well



What Problems
w/ Bag of n-grams?

• Same as before: parameter explosion

• No sharing between similar words/n-grams

• Lose the global sequence order



What Problems
w/ Bag of n-grams?

• Same as before: parameter explosion

• No sharing between similar words/n-grams

• Lose the global sequence order

Other solutions?



Neural Sequence Models



Neural Sequence Models

Most of NLP tasks  Sequence 
representation learning problem



Neural Sequence Models

char: i-m-p-o-s-s-i-b-l-e

word: I-love-this-movie
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Convolutional Neural Networks



Convolution   -- > mathematical operation
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• Discrete

Definition of Convolution



Convolution   -- > mathematical operation

• Continuous

• Discrete

Definition of Convolution



Intuitive Understanding

Input: feature vector

Filter: learnable param.

Output: hidden vector



Priori Entailed by CNNs



Priori Entailed by CNNs

Local bias:
Different words could 
interact with their 
neighbors



Priori Entailed by CNNs

Different words could 
interact with their neighbors

Local bias:



Priori Entailed by CNNs

Parameter sharing:
The parameters of 
composition function 
are the same.



Basics of CNNs



Concept: 2d Convolution

• Deal with 2-dimension signal, i.e., image
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Concept: Stride
Stride: the number of units shifts over the input 
matrix.
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Concept: Padding
Padding: dealing with the units at the boundary 
of input vector.



Concept: Padding
Padding: dealing with the units at the boundary 
of input vector.
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Three Types of Convolutions

Narrow

Equal
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n=3
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Wide
m=7

n=3

m+n-1=9



Concept: Multiple Filters

Motivation:  each filter represents a unique feature of 
the convolution window.



Concept: Pooling

• Pooling is an aggregation operation, aiming to select 
informative features



Concept: Pooling

• Pooling is an aggregation operation, aiming to select 
informative features

• Max pooling: “Did you see this feature anywhere in the 
range?” (most common)

• Average pooling: “How prevalent is this feature over the 
entire range”

• k-Max pooling: “Did you see this feature up to k times?”

• Dynamic pooling: “Did you see this feature in the 
beginning? In the middle? In the end?”



Max pooling: 

Concept: Pooling



Max pooling: 

Mean pooling: 

Concept: Pooling



Max pooling: 

Mean pooling: 

K-max pooling

Concept: Pooling



Max pooling: 

Mean pooling: 

K-max pooling

Concept: Pooling

Dynamic pooling: 



Case Study:
Convolutional Networks for Text 

Classification (Kim 2015)
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• Task: sentiment classification

• Input: a sentence

• Output: a class label (positive/negative)



CNNs for Text Classification
(Kim 2015)

• Task: sentiment classification

• Input: a sentence

• Output: a class label (positive/negative)

• Model: 

• Embedding layer 

• Multi-Channel CNN layer

• Pooling layer/Output layer



Overview of the Architecture
FilterInput CNN Pooling Output

Dict



Embedding Layer
Input

Look-up 
Table

• Build a look-up table (pre-
trained? Fine-tuned?)

• Discrete  distributed



Conv. Layer



Conv. Layer

• Stride size? 



Conv. Layer

• Stride size? 

• 1



Conv. Layer

• Wide, equal, narrow?



Conv. Layer

• Wide, equal, narrow?

• narrow



Conv. Layer

• How many filters?

 



Conv. Layer

• How many filters?

• 4



Pooling Layer

• Max-pooling

• Concatenate



Output Layer

• MLP layer

• Dropout

• Softmax



CNN Variants



Priori Entailed by CNNs

• Local bias

• Parameter sharing



Priori Entailed by CNNs

• Local bias

• Parameter sharing

How to handle long-term 
dependencies?

How to handle different types 
of compositionality?



Priori Entailed by CNNs

Priori

Advantage

Limitation



CNN Variants

• Long-term dependency

• increase receptive fields (dilated)

• Complicated Interaction

• dynamic filters

Locality Bias

Sharing 
Parameters



Dilated Convolution
(e.g. Kalchbrenner et al. 2016)

i _ h a t e _ t h i s _ f i l m

sentence class
(classification)

next char
(language
modeling)
word class
(tagging)

• Long-term dependency with less layers



Dynamic Filter CNN
(e.g. Brabandere et al. 2016)

• Parameters of filters are static, failing to capture rich 
interaction patterns.

• Filters are generated dynamically conditioned on an 
input.



Common Applications



CNN Applications

• Word-level CNNs
• Basic unit: word

• Learn the representation of a sentence

• Phrasal patterns

• Char-level CNNs
• Basic unit: character

• Learn the representation of a word

• Extract morphological patters



CNN Applications

• Word-level CNN
• Sentence representation



NLP (Almost) from Scratch
(Collobert et al.2011)

• One of the most important 
papers in NLP

• Proposed as early as 2008



CNN Applications

• Word-level CNN
• Sentence representation

• Char-level CNN
• Text Classification



CNN-RNN-CRF for Tagging
(Ma et al. 2016)

• A classic framework and de-facto standard for 
tagging

• Char-CNN is used to learn word representations 
(extract morphological information).

• Complementarity



Structured Convolution



Why Structured Convolution?

The man ate the egg.
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Why Structured Convolution?

The man ate the egg.
• Some convolutional 

operations are not 
necessary

• e.g. noun-verb pairs very 
informative, but not captured 
by normal CNNs

• Language has structure, 
would like it to localize 
features

The “Structure” provides stronger prior! 



Tree-structured Convolution
(Mou et al. 2014, Ma et al. 2015)

• Convolve over parents, grandparents, siblings



Graph Convolution
(e.g. Marcheggiani et al. 2017)

• Convolution is shaped by graph 
structure

• For example, dependency
tree is a graph with
1) Self-loop connection
2) Dependency connections
3) Reverse connections



Summary



Neural Sequence Models

CBOW
Bag of n-grams

CNNs
RNNs

Transformer
GraphNNs



Neural Sequence Models

How do we make the choices of 
different neural  sequence models?



Understand the design philosophy 
of a model

• Inductive bias: the set of assumptions that the 
learner uses to predict outputs given inputs that it 
has not encountered (from wikipedia)

• Structural bias: a set of prior knowledge 
incorporated into your model design



Structural Bias

• Structural bias: a set of prior knowledge 
incorporated into your model design

   Local
   Non-local

• Locality



Structural Bias

• Structural bias: a set of prior knowledge 
incorporated into your model design

• Topological structure

   Sequential

Tree

Graph



What inductive bias does a neural 
component entail?
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What inductive bias does a neural 
component entail?

Locality Bias

Topological Structure

Local Non-local

Seq. Tree Graph

?



Questions?


