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NLP and Sequential Data

 NLP is full of sequential data
e \Words In sentences
e Characters in words

e Sentences in discourse



| ong-distance
Dependencies In Language

* Agreement in number, gender, etc.

He does not have very much confidence in himself.
She does not have very much confidence in herself.

e Selectional preference

The reign has lasted as long as the life of the queen.
The rain has lasted as long as the lite of the clouds.



Can be Complicated!

e \What is the referent of “it”"?

The trophy would not fit in the brown suitcase because it was too big.

Trophy

The trophy would not fit in the brown suitcase because it was too small.

Suitcase

(from Winograd Schema Challenge:
http://commonsensereasoning.org/winograd.html)



http://commonsensereasoning.org/winograd.html

Recurrent Neural Networks
(Elman 1990)

e Jools to “remember” information
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Unrolling In Time

* What does processing a sequence look like”
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Training RNNSs

| hate this movie
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RNN [raining

* The unrolled graph is a well-formed (DAG)
computation graph—we can run backprop

==
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fotal loss

e Parameters are tied across time, derivatives are
aggregated across all time steps

* This is historically called "backpropagation through
time” (BPTT)



Parameter lying

Parameters are shared! Derivatives are accumulated.
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Applications of RNNs



What Can RNNs Do?

* Represent a sentence
* Read whole sentence, make a prediction
* Represent a context within a sentence

* Read context up until that point



Representing Sentences
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e Sentence classification
e Conditioned generation

e Retrieval



Representing Contexts
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* Tagging
* [Language Modeling

e Calculating Representations for Parsing, etc.



e.g. Language Modeling

hate this movie
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 Language modeling is like a tagging task, where
each tag is the next word!



BI-RNNS

* A simple extension, run the RNN in both directions
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Code Examples

sentiment-rnn.py



Vanishing Gradients



Vanishing Gradient

* (Gradients decrease as they get pushed back
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« Why”? “Squashed” by non-linearities or small
welights in matrices.




A Solution:

Long Short-term Memory
(Hochreiter and Schmidhuber 1997)

e Basic idea: make additive connections between
time steps

* Addition does not modify the gradient, no vanishing

e (Gates to control the information flow



| STM Structure
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update u: what value do we try to add to the memory cell?
'Input I: how much of the update do we allow to go through? !
output o: how much of the cell do we reflect in the next state? |
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Code Examples
sentiment-lstm.py
Ilm-1lstm.py




What can LSTMs Learn?

(Karpathy et al. 2015)

* Additive connections make single nodes surprisingly interpretable
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Count length of sentence

What can LSTMs Learn? (2

(Shi et al. 2016, Radford et al. 2017)
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Sentiment

25 August 2093 League of Extraordinary Gentlemen: Sean Connery is one cf
the all time greats and T have been a fan of his since the 1950's. T went
to this movie because Sean Connery was the main actor. I had not read
reviews or had any prior knowlasdge of the movie. The movie surprised me
quite a bit. The scenery and sights were spectacular, but the plot was
unreal to thz point of being ridiculous. In my mind this was not one of

his better movies 1t could be the werst. th he chose to be in
WHLT I : M1 cVvlie !

\l'||

1 found this to be a charming adaptation, very lively and full of fun.
With the exception of a couple of major errors, the cast is wonderful. I
have to echo sonme of the earlier comments -- Chynna Phillips is horribly
miscast as a teenager. At 27, she's just too cld (and, yes, it DOES show),
and lacks the singing "chops" for Broadway-style music. Vanessa williams

ally sparkle -- with special kudos to Brlgltta
I also enjcyed Tyre Daly's performance, though I'm
Finally, the dancing Shriners are a riot,
The movie 1s sultable for the whole

pau and Chiara Zanni.
not generally a fan of her work.
especially the dorky three in the bar.
family, and I highly recommend it.



Efficiency Tricks



Handling Mini-batching

* Mini-batching makes things much taster!

* But mini-batching in RNNs is harder than in feed-
forward networks

* Each word depends on the previous word

* Seqguences are of various length



Mini-batching Method

this Is an example </s>
this is another </s> </s>
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(Or use DyNet automatic mini-batching,
much easier but a bit slower)



Bucketing/Sorting

It we use sentences of ditferent lengths, too much
padding and sorting can result in decreased

performance

To remedy this: sort sentences so similarly-
lengthed sentences are in the same batch



Code Example

Ilm-minibatch.py




Optimized Implementations of LSTMs
(Appleyard 2015)

* In simple implementation, still need one GPU call
for each time step

* For some RNN variants (e.g. LSTM) efficient full-
sequence computation supported by CuDNN

00N . ca¥hg 1

maxwell sgemm 128x64 m

maewvel’_sgermim_128x64_tn -

e Basic process: combine inputs into tensor, single
GPU call combine inputs into tensor, single GPU

call

 Downside: significant loss of flexibility



RNN Variants



Gated Recurrent Units
(Cho et al. 2014)

* A simpler version that preserves the additive
connections
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Additive or Non-linear

* Note: GRUs cannot do things like simply count



Extensive Architecture Search for LSTMs
(Greffen et al. 2015)

NIG: No Input Gate: i* =1

o Many different NFG: No Forget Gate: f* =1
NOG: No Output Gate: o' = 1
TypeS Of NIAF: No Input Activation Function: g(x) = X
' NOAF: No Output Activation Function: h(x) = x
architectures tested CIFG: Coupled Input and Forget Gate: f* =1 — i’
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Handling Long Sequences



Handling Long Sequences

* Sometimes we would like to capture long-term
dependencies over long sequences

* e.g. words in full documents

 However, this may not fit on (GPU) memory



Truncated BPI |

* Backprop over shorter segments, initialize w/ the
state from the previous segment

1st Pass | hate this movie

! ! !
@EHHE® @HHE® @HHE®
;
[ — [ — [— \

/

2nd Pass state only, no backprop 7

—

SO bad
| | |
DOHBHD DOHBHD DOHHD

::



Questions?



