CS11-747 Neural Networks for NLP

Attention

Graham Neubig

Site
https://phontron.com/class/nn4nlp2020/
Encoder-decoder Models
(Sutskever et al. 2014)

Encoder

Decoder

I hate this movie

I hate this movie
Sentence Representations

Problem!

“You can’t cram the meaning of a whole %&!*ing sentence into a single $&!*ing vector!”

— Ray Mooney

- But what if we could use multiple vectors, based on the length of the sentence.

 this is an example

 this is an example
Attention
Basic Idea

(Bahdanau et al. 2015)

• Encode each word in the sentence into a vector

• When decoding, perform a linear combination of these vectors, weighted by “attention weights”

• Use this combination in picking the next word
Calculating Attention (1)

- Use “query” vector (decoder state) and “key” vectors (all encoder states)
- For each query-key pair, calculate weight
- Normalize to add to one using softmax

\[
\begin{align*}
a_1 &= 2.1 \\
a_2 &= -0.1 \\
a_3 &= 0.3 \\
a_4 &= -1.0
\end{align*}
\]

\[
\begin{align*}
\alpha_1 &= 0.76 \\
\alpha_2 &= 0.08 \\
\alpha_3 &= 0.13 \\
\alpha_4 &= 0.03
\end{align*}
\]
Calculating Attention (2)

• Combine together value vectors (usually encoder states, like key vectors) by taking the weighted sum

\[
\alpha_1 = 0.76 \quad \alpha_2 = 0.08 \quad \alpha_3 = 0.13 \quad \alpha_4 = 0.03
\]

• Use this in any part of the model you like
A Graphical Example

Image from Bahdanau et al. (2015)
Attention Score Functions (1)

- q is the query and k is the key

- **Multi-layer Perceptron** (Bahdanau et al. 2015)
 \[
 a(q, k) = w_2^\top \tanh(W_1[q; k])
 \]
 - Flexible, often very good with large data

- **Bilinear** (Luong et al. 2015)
 \[
 a(q, k) = q^\top W k
 \]
Attention Score Functions (2)

• **Dot Product** (Luong et al. 2015)

\[a(q, k) = q^T k \]

• No parameters! But requires sizes to be the same.

• **Scaled Dot Product** (Vaswani et al. 2017)

• *Problem*: scale of dot product increases as dimensions get larger

• *Fix*: scale by size of the vector

\[a(q, k) = \frac{q^T k}{\sqrt{|k|}} \]
Let’s Try it Out!
batched_attention.py

Try it Yourself: This code uses MLP attention. What would you do to implement a different variety of attention?
What do we Attend To?
Input Sentence: Copy

- Like the previous explanation
- But also, more directly through a *copy mechanism* (Gu et al. 2016)
Input Sentence: Bias

- If you have a translation dictionary, use it to bias outputs (Arthur et al. 2016)

<table>
<thead>
<tr>
<th>Attention</th>
<th>I</th>
<th>come</th>
<th>from Tunisia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
<td>0.01</td>
<td>0.02</td>
</tr>
</tbody>
</table>

watashi	0.6	0.03	0.01	0.0	0.03
ore	0.2	0.01	0.02	0.0	0.01
...
kuru	0.01	0.3	0.01	0.0	0.00
kara	0.02	0.1	0.5	0.01	0.02
...
chunijia	0.0	0.0	0.0	0.96	0.89
oranda	0.0	0.0	0.0	0.0	0.00

Sentence-level dictionary probability matrix

Dictionary probability for current word
Previously Generated Things

• In language modeling, attend to the previous words (Merity et al. 2016)

\[p(Yellen) = g \ p_{\text{vocab}}(Yellen) + (1 - g) \ p_{\text{ptr}}(Yellen) \]

• In translation, attend to either input or previous output (Vaswani et al. 2017)
Various Modalities

- Images (Xu et al. 2015)
- Speech (Chan et al. 2015)
Hierarchical Structures
(Yang et al. 2016)

- Encode with attention over each sentence, then attention over each sentence in the document
Multiple Sources

- Attend to multiple sentences (Zoph et al. 2015)
 - Source 1: UNK Aspekte sind ebenfalls wichtig.
 - Target: UNK aspects are important, too.
 - Source 2: Les aspects UNK sont également importants.

- Libovicky and Helcl (2017) compare multiple strategies

- Attend to a sentence and an image (Huang et al. 2016)
Intra-Attention / Self Attention
(Cheng et al. 2016)

• Each element in the sentence attends to other elements → context sensitive encodings!

```
this  is  an  example

this  

is  

an  

eample  
```

```text
this  
is  
an  
example  
```
Improvements to Attention
Coverage

• **Problem**: Neural models tend to drop or repeat content

• **Solution**: Model how many times words have been covered

 • Impose a penalty if attention not approx. 1 over each word (Cohn et al. 2015)

 • Add embeddings indicating coverage (Mi et al. 2016)
Incorporating Markov Properties
(Cohn et al. 2015)

- **Intuition**: attention from last time tends to be correlated with attention this time

- Add information about the last attention when making the next decision
Bidirectional Training
(Cohn et al. 2015)

• **Intuition:** Our attention should be roughly similar in forward and backward directions

• **Method:** Train so that we get a bonus based on the trace of the matrix product for training in both directions

\[
\text{tr}(A_{\rightarrow Y} A_{
ightarrow X}^T)
\]
Supervised Training
(Mi et al. 2016)

- Sometimes we can get “gold standard” alignments a-priori
 - Manual alignments
 - Pre-trained with strong alignment model
- **Train the model to match** these strong alignments
Attention is not Alignment!
(Koehn and Knowles 2017)

• Attention is often blurred

• Attention is often off by one

• It can even be manipulated to be non-intuitive! (Jain and Wallace 2019)
Specialized Attention Varieties
Hard Attention

- Instead of a soft interpolation, make a **zero-one decision** about where to attend (Xu et al. 2015)
 - Harder to train, requires methods such as reinforcement learning (see later classes)
 - Perhaps this helps interpretability? (Lei et al. 2016)

![Review]

Review
the beer was n’t what i expected, and i’m not sure it’s “true to style”, but i thought it was delicious. a very pleasant ruby red-amber color with a relatively brilliant finish, but a limited amount of carbonation, from the look of it. aroma is what i think an amber ale should be - a nice blend of caramel and happiness bound together.

Ratings

- **Look**: 5 stars
- **Smell**: 4 stars
Monotonic Attention
(e.g. Yu et al. 2016)

• In some cases, we might know the output will be the same order as the input

 • Speech recognition, incremental translation, morphological inflection (?), summarization (?)

• Basic idea: hard decisions about whether to read more
Multi-headed Attention

- **Idea:** multiple attention “heads” focus on different parts of the sentence

- e.g. Different heads for “copy” vs regular (Allamanis et al. 2016)

- Or multiple independently learned heads (Vaswani et al. 2017)

- Or one head for every hidden node! (Choi et al. 2018)
An Interesting Case Study: “Attention is All You Need”
(Vaswani et al. 2017)
Summary of the "Transformer"
(Vaswani et al. 2017)

- A sequence-to-sequence model based entirely on attention
- Strong results on standard WMT datasets
- Fast: only matrix multiplications
Attention Tricks

• **Self Attention**: Each layer combines words with others

• **Multi-headed Attention**: 8 attention heads learned independently

• **Normalized Dot-product Attention**: Remove bias in dot product when using large networks

• **Positional Encodings**: Make sure that even if we don’t have RNN, can still distinguish positions
Training Tricks

- **Layer Normalization**: Help ensure that layers remain in reasonable range

- **Specialized Training Schedule**: Adjust default learning rate of the Adam optimizer

- **Label Smoothing**: Insert some uncertainty in the training process

- **Masking for Efficient Training**
Masking for Training

- We want to perform training in as few operations as possible using big matrix multiplies.

- We can do so by “masking” the results for the output.

```
kono  eiga  ga  kirai  I  hate  this  movie  </s>
```
Questions?