CS11-747 Neural Networks for NLP

Pre-trained Word Representations

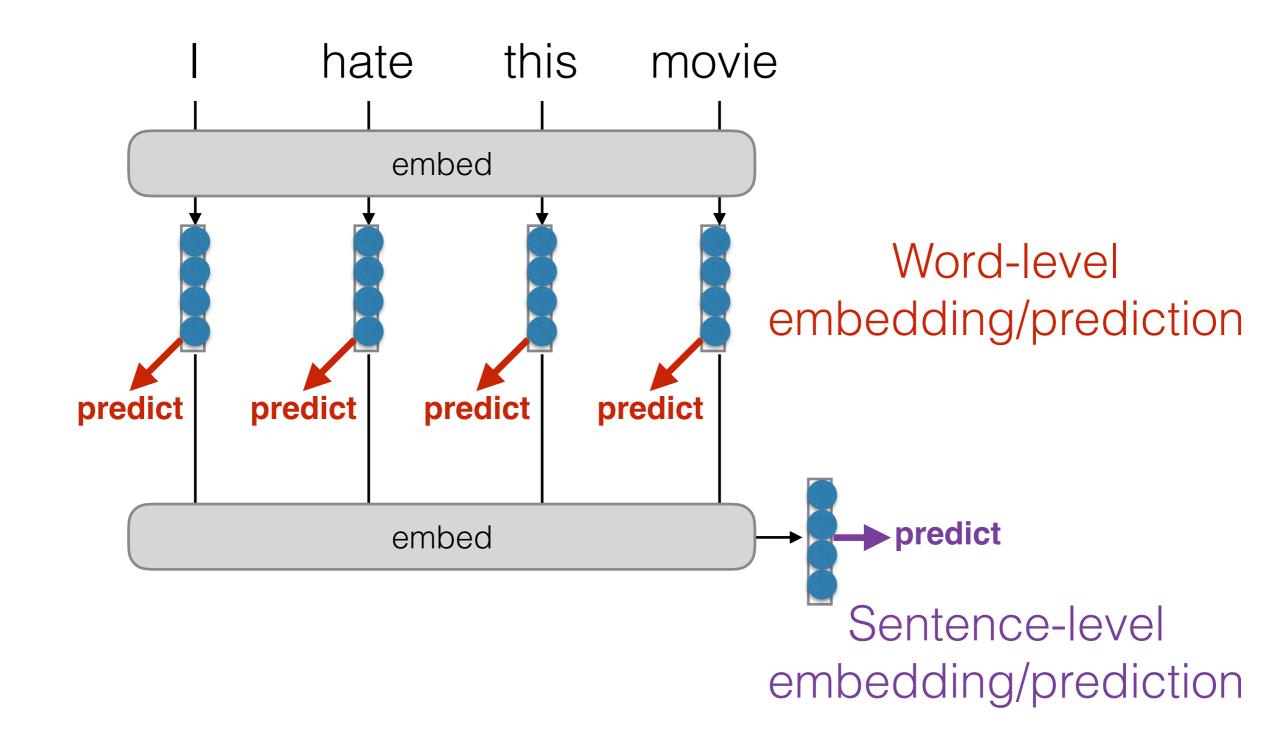
Graham Neubig

Carnegie Mellon University

Language Technologies Institute

Site https://phontron.com/class/nn4nlp2020/

Remember: Neural Models



How to Train Embeddings?

- Initialize randomly, train jointly with the task (what we've discussed to this point)
- Pre-train on a supervised task (e.g. POS tagging) and test on another, (e.g. parsing)
- Pre-train on an unsupervised task (e.g. language modeling)

(Non-contextualized) Word Representations

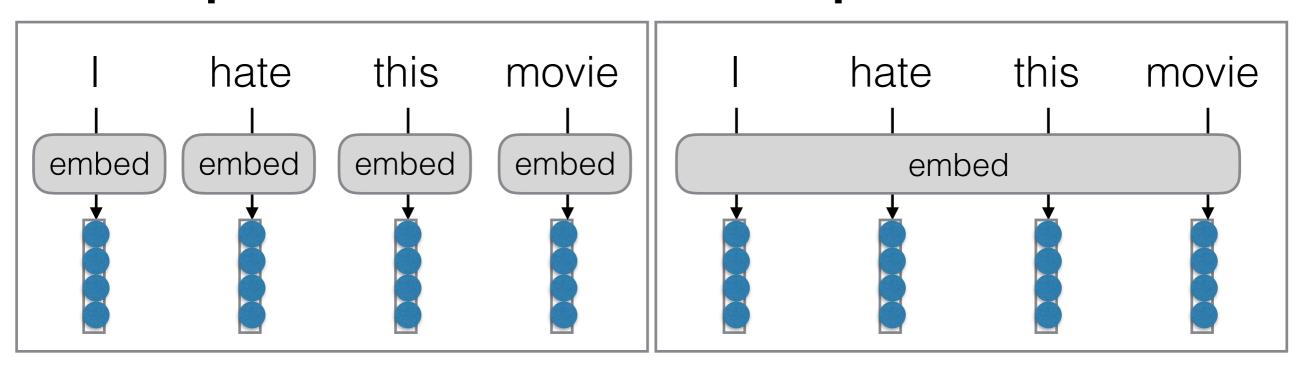
What do we want to know about words?

- Are they the same part of speech?
- Do they have the same conjugation?
- Do these two words mean the same thing?
- Do they have some semantic relation (is-a, part-of, went-to-school-at)?

Contextualization of Word Representations

Non-contextualized Representations

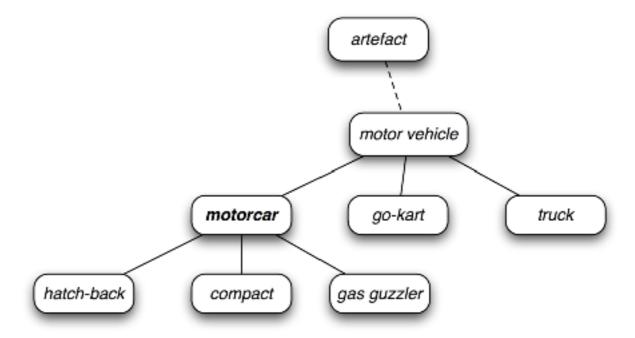
Contextualized Representations



Mainly Handled Today

A Manual Attempt: WordNet

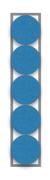
 WordNet is a large database of words including parts of speech, semantic relations



- Major effort to develop, projects in many languages.
- But can we do something similar, more complete, and without the effort?

An Answer (?): Word Embeddings!

A continuous vector representation of words

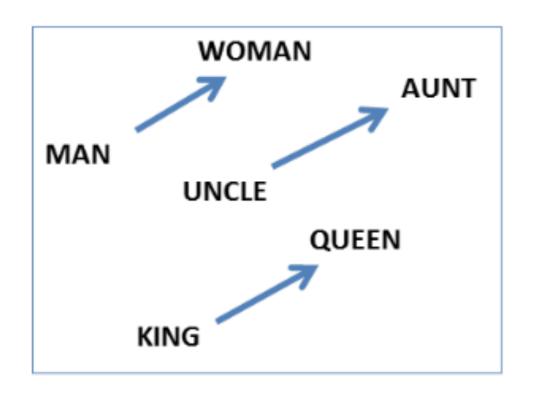


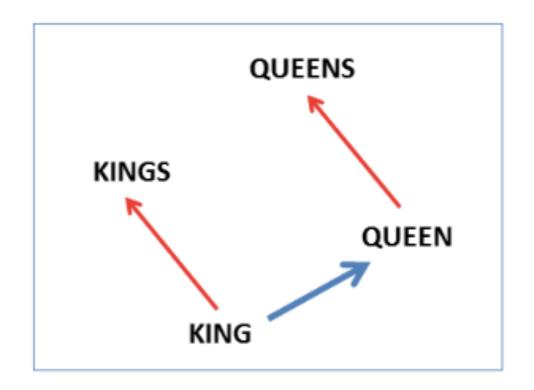
- Within the word embedding, these features of syntax and semantics may be included
 - Element 1 might be more positive for nouns
 - Element 2 might be positive for animate objects
 - Element 3 might have no intuitive meaning whatsoever

Word Embeddings are Cool!

(An Obligatory Slide)

e.g. king-man+woman = queen (Mikolov et al. 2013)





 "What is the female equivalent of king?" is not easily accessible in many traditional resources

Distributional vs. Distributed Representations

Distributional representations

- Words are similar if they appear in similar contexts (Harris 1954); distribution of words indicative of usage
- In contrast: non-distributional representations created from lexical resources such as WordNet, etc.

Distributed representations

- Basically, something is represented by a vector of values, each representing activations
- In contrast: *local* representations, where represented by a discrete symbol (one-hot vector)

Distributional Representations

(see Goldberg 10.4.1)

Words appear in a context

<s></s>	<s></s>	<	unk>	comn	nunications	pittsburgh	acquired	<unk></unk>	&	co.
investmen	t mana	agementin	ıc.	а		pittsburgh	firm	that	runs	а
<s></s>	mr.	al	llen	's		pittsburgh	firm	advanced	investment	management
look	stupi	d <	unk>	forme	er	pittsburgh	<unk></unk>	second	<unk></unk>	<unk></unk>
through	the	uı	niversity	of		pittsburgh	law	school	<s></s>	<s></s>
with	the	uı	niversity	of		pittsburgh	<s></s>	<s></s>	<s></s>	<s></s>
<unk></unk>	he	he	eads	the		pittsburgh	branch	of	the	committee
at	the	uı	niversity	of		pittsburgh	earn	up	to	\$
for		society	corp		a	cleveland	bank	said	demand	for
as		washingt	ton <unk< td=""><td>></td><td>r.i.</td><td>cleveland</td><td><unk></unk></td><td>n.c.</td><td>minneapolis</td><td>and</td></unk<>	>	r.i.	cleveland	<unk></unk>	n.c.	minneapolis	and
<s:< td=""><td>></td><td><s></s></td><td><unk< td=""><td>></td><td>a</td><td>cleveland</td><td>merchant</td><td>bank</td><td>owns</td><td>about</td></unk<></td></s:<>	>	<s></s>	<unk< td=""><td>></td><td>a</td><td>cleveland</td><td>merchant</td><td>bank</td><td>owns</td><td>about</td></unk<>	>	a	cleveland	merchant	bank	owns	about
ne	W	stadiums	s rang	ng	from	cleveland	to	san	antonio	and
<s:< td=""><td>></td><td>the</td><td>phila</td><td>delphia</td><td>and</td><td>cleveland</td><td>districts</td><td>for</td><td>example</td><td>reported</td></s:<>	>	the	phila	delphia	and	cleveland	districts	for	example	reported
mo	donald	&	CO.		in	cleveland	said	<unk></unk>	's	unanticipated
<u< td=""><td>nk></td><td>tumor</td><td>at</td><td></td><td>the</td><td>cleveland</td><td>clinic</td><td>in</td><td>N</td><td><s></s></td></u<>	nk>	tumor	at		the	cleveland	clinic	in	N	<s></s>
at		mcdonal	d &		CO.	cleveland	<s></s>	<s></s>	<s></s>	<s></s>

(try it yourself w/ kwic.py)

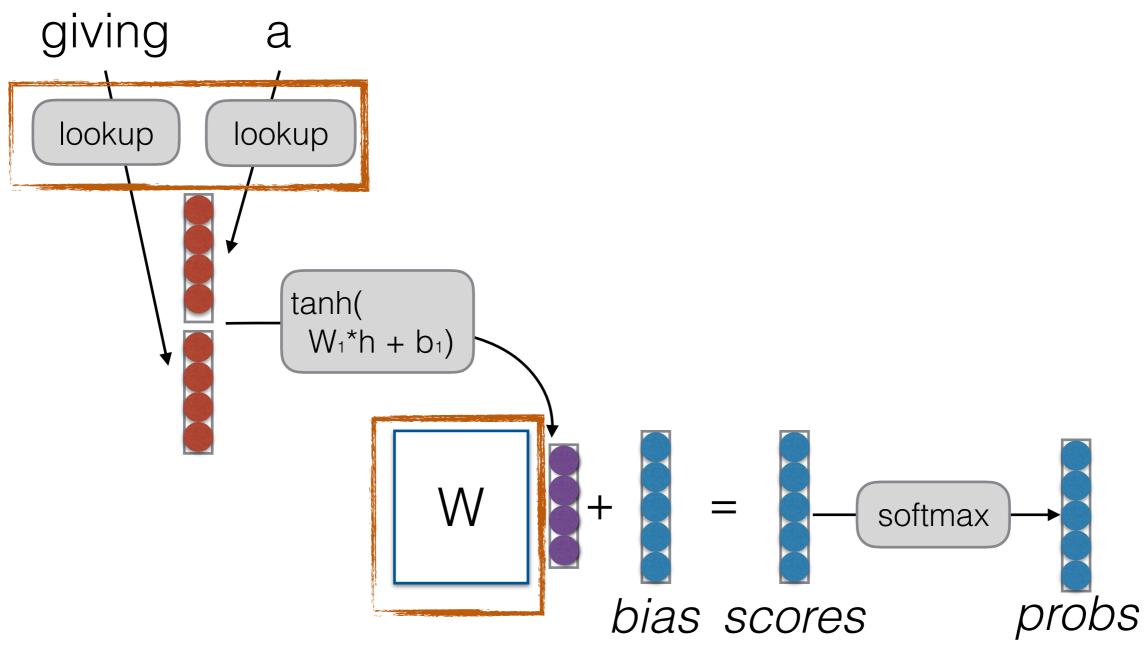
Count-based Methods

- Create a word-context count matrix
 - Count the number of co-occurrences of word/ context, with rows as word, columns as contexts
 - Maybe weight with pointwise mutual information
 - Maybe reduce dimensions using SVD
- Measure their closeness using cosine similarity (or generalized Jaccard similarity, others)

Prediction-basd Methods (See Goldberg 10.4.2)

- Instead, try to predict the words within a neural network
- Word embeddings are the byproduct

Word Embeddings from Language Models



Context Window Methods

- If we don't need to calculate the probability of the sentence, other methods possible!
- These can move closer to the contexts used in count-based methods
- These drive word2vec, etc.

CBOW

(Mikolov et al. 2013)

Predict word based on sum of surrounding embeddings

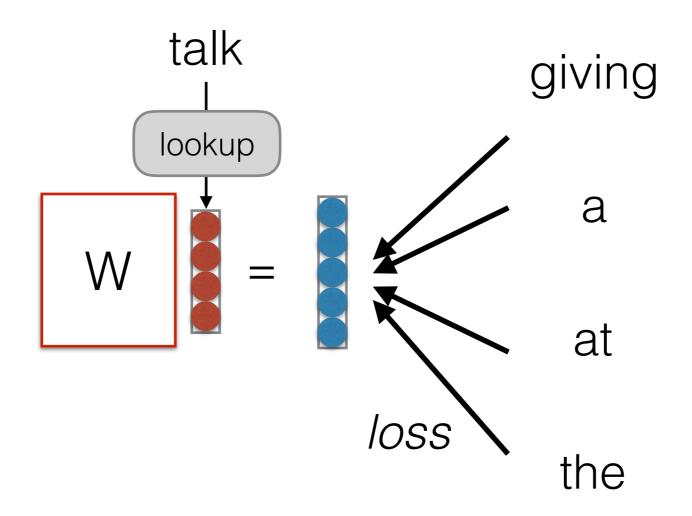


Let's Try it Out! wordemb-cbow.py

Skip-gram

(Mikolov et al. 2013)

Predict each word in the context given the word



Let's Try it Out!

wordemb-skipgram.py

Count-based and Prediction-based Methods

- Strong connection between count-based methods and prediction-based methods (Levy and Goldberg 2014)
- Skip-gram objective is equivalent to matrix factorization with PMI and discount for number of samples k (sampling covered next time)

$$M_{w,c} = PMI(w,c) - \log(k)$$

GIOVE (Pennington et al. 2014)

 A matrix factorization approach motivated by ratios of P(word | context) probabilities

	Probability and Ratio					
<u>Why?</u>	P(k ice)	1.9×10^{-4}	6.6×10^{-5}	3.0×10^{-3}	1.7×10^{-5} 1.8×10^{-5}	
	P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}	
	P(k ice)/P(k steam)	8.9	8.5×10^{-2}	1.36	0.96	

 Nice derivation from start to final loss function that satisfies desiderata

Start:

$$F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{jk}}$$

Meaningful in linear space $F(w_i, w_j, \tilde{w}_k) = \frac{P_{ik}}{P_{ik}}$ (differences, dot products) Word/context invariance Robust to low-freq. ctxts.

End:

$$J = \sum_{i,j=1}^{V} f(X_{ij}) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij} \right)^2$$

What Contexts?

- Context has a large effect!
- Small context window: more syntax-based embeddings
- Large context window: more semantics-based, topical embeddings
- Context based on syntax: more functional, w/ words with same inflection grouped

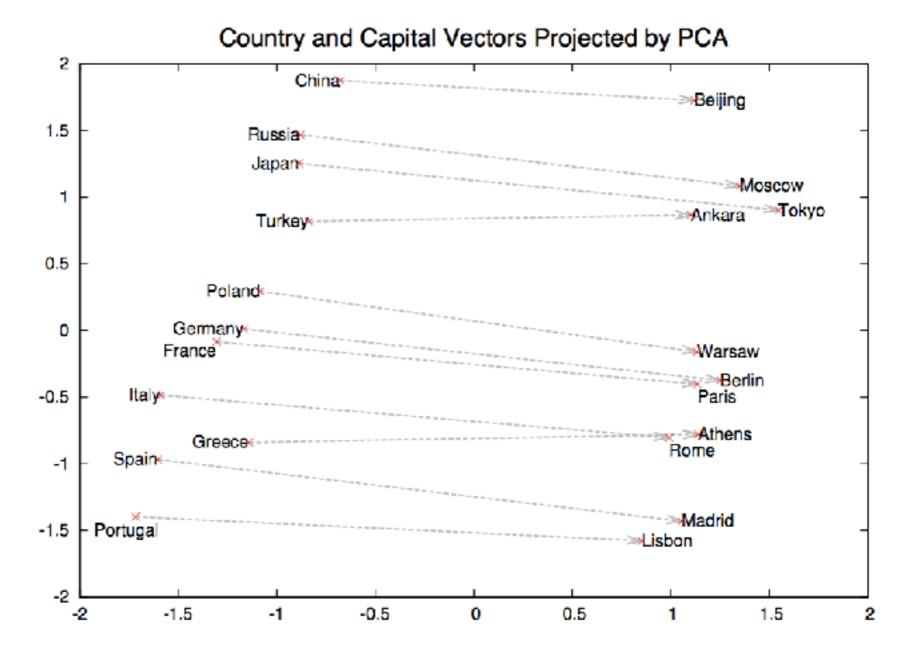
Evaluating Embeddings

Types of Evaluation

- Intrinsic vs. Extrinsic
 - Intrinsic: How good is it based on its features?
 - Extrinsic: How useful is it downstream?
- Qualitative vs. Quantitative
 - Qualitative: Examine the characteristics of examples.
 - Quantitative: Calculate statistics

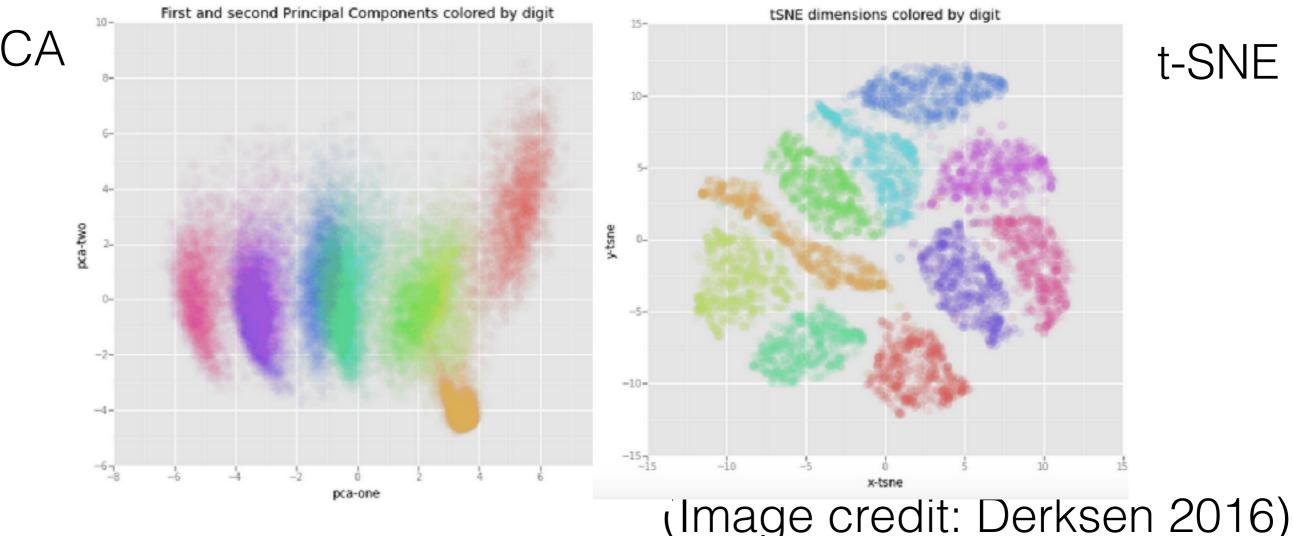
Visualization of Embeddings

 Reduce high-dimensional embeddings into 2/3D for visualization (e.g. Mikolov et al. 2013)



Non-linear Projection

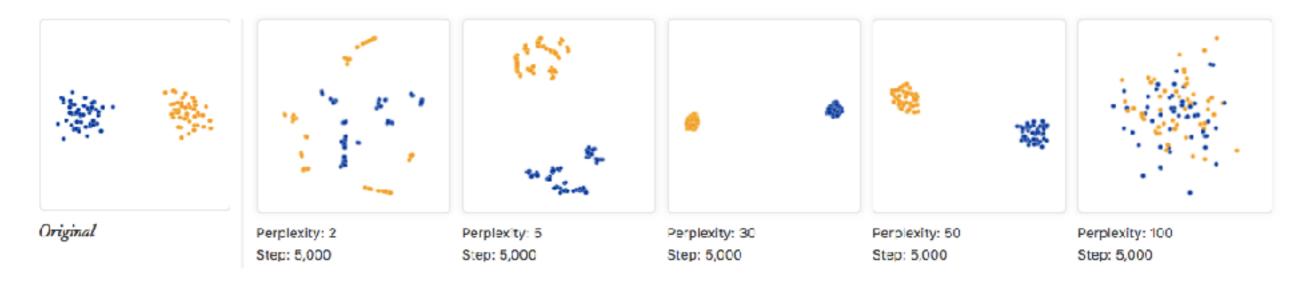
- Non-linear projections group things that are close in highdimensional space
- e.g. SNE/t-SNE (van der Maaten and Hinton 2008) group things that give each other a high probability according to a Gaussian



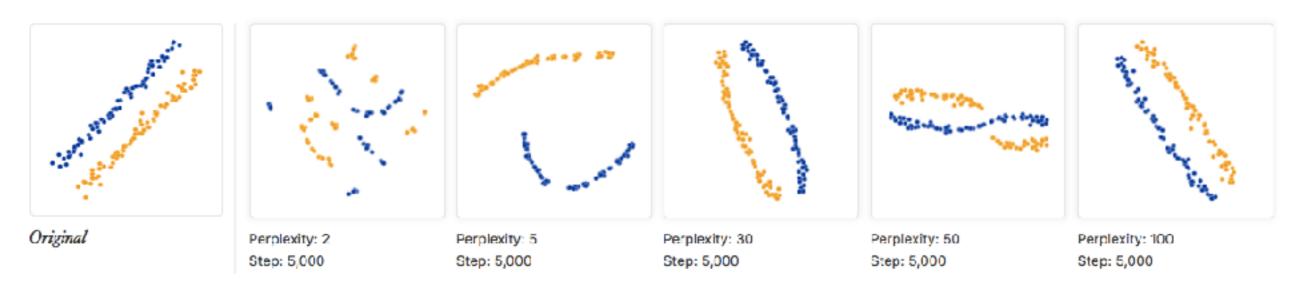
Let's Try it Out! wordemb-vis-tsne.py

t-SNE Visualization can be Misleading! (Wattenberg et al. 2016)

Settings matter



Linear correlations cannot be interpreted



Intrinsic Evaluation of Embeddings

(categorization from Schnabel et al 2015)

- Relatedness: The correlation btw. embedding cosine similarity and human eval of similarity?
- Analogy: Find x for "a is to b, as x is to y".
- Categorization: Create clusters based on the embeddings, and measure purity of clusters.
- Selectional Preference: Determine whether a noun is a typical argument of a verb.

Extrinsic Evaluation: Using Word Embeddings in Systems

- Initialize w/ the embeddings
- Concatenate pre-trained embeddings with learned embeddings
- Latter is more expressive, but leads to increase in model parameters

How Do I Choose Embeddings?

No one-size-fits-all embedding (Schnabel et al 2015)

	relatedness			categorization		sel.	sel. prefs		analogy							
	rg	ws	wss	wsr	men	toefl	ap	esslli batt	up	mcrae	an	ansyn	ansem	ave	rage	
CBOW	74.0	64.0	71.5	56.5	70.7	66.7	65.9	70.5 85.2	24.1	13.9	52.2	47.8	57.6		58.6	
GloVe	63.7	54.8	65.8	49.6	64.6	69.4	64.1	65.9 77.8	27.0	18.4	42.2	44.2	39.7		53.4	
TSCCA	57.8	54.4	64.7	43.3	56.7	58.3	57.5	70.5 64.2	31.0	14.				dev	test	p-value
C&W	48.1	49.8	60.7	40.1	57.5	66.7	60.6	61.4 80.2	28.3	16.						
H-PCA	19.8	32.9	43.6	15.1	21.3	54.2	34.1	50.0 42.0	-2.5	3.		Baseli	ne 94	.18	93.78	0.000
Rand. Proj.											R	and. Pr	oj. 9 4	.33	93.90	0.006
Kanu. Proj.	1/.1	19.5	24.5	10.1	11.5	31.4	21.7	30.0 25.0	-0.5	1.		G1o	Va 04	28	02.02	0.015

Table 1: Results on absolute intrinsic evaluation. The best result for each The second row contains the names of the corresponding datasets.

	dev	test	p-value
Baseline	94.18	93.78	0.000
Rand. Proj.	94.33	93.90	0.006
GloVe	94.28	93.93	0.015
H-PCA	94.48	93.96	0.029
C&W	94.53	94.12	
CBOW	94.32	93.93	0.012
TSCCA	94.53	94.09	0.357

Table 4: F1 chunking results using different word embeddings as features. The *p*-values are with respect to the best performing method.

Be aware, and use the best one for the task

When are Pre-trained Embeddings Useful?

- Basically, when training data is insufficient
- Very useful: tagging, parsing, text classification
- Less useful: machine translation
- Basically not useful: language modeling

Improving Embeddings

Limitations of Embeddings

- Sensitive to superficial differences (dog/dogs)
- Not necessarily coordinated with knowledge or across languages
- Not interpretable
- Can encode bias (encode stereotypical gender roles, racial biases)

Sub-word Embeddings (1)

Can capture sub-word regularities

<u>Morpheme-based</u> (Luong et al. 2013)

unfortunately_{STM}

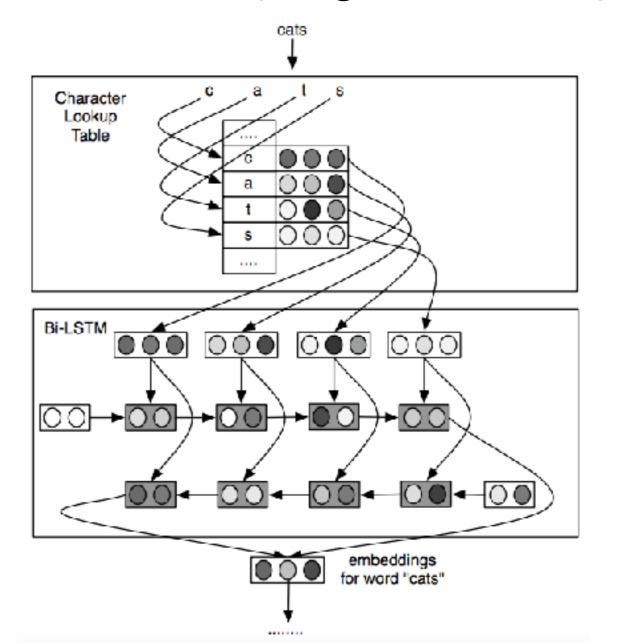
unfortunate_{STM}

ly_{SUF}

un_{PRE}

fortunate_{STM}

Character-based (Ling et al. 2015)



Sub-word Embeddings (2)

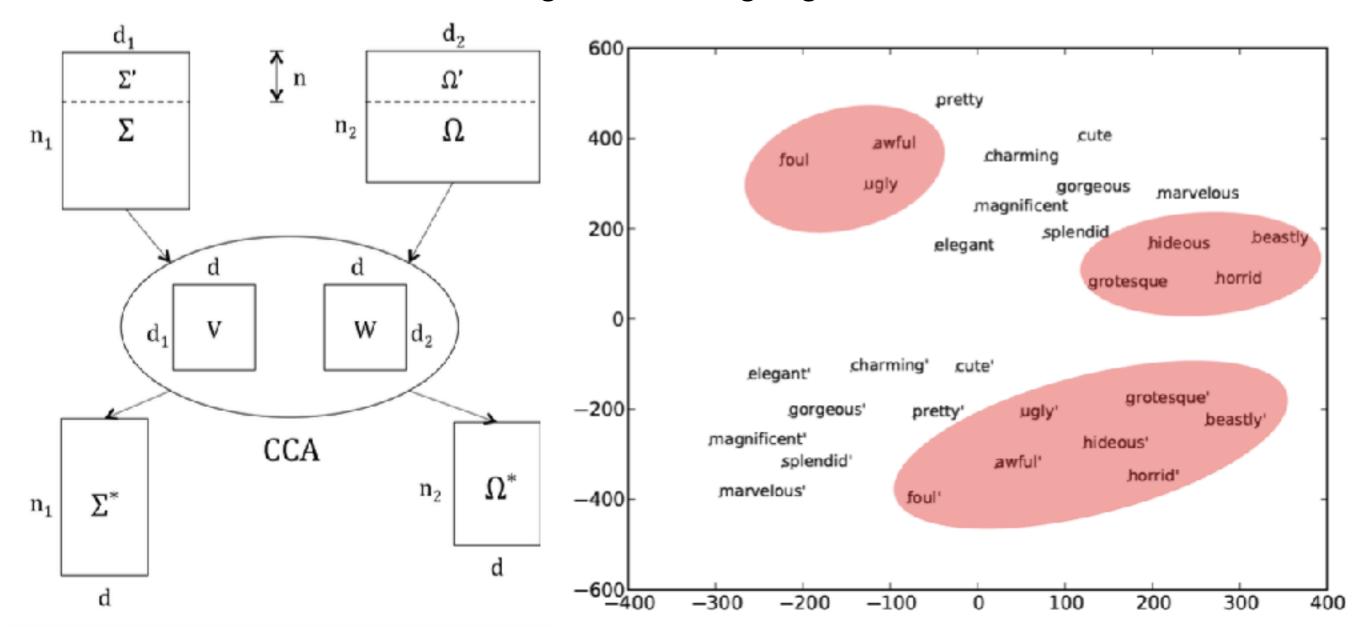
 Bag of character n-grams used to represent word (Wieting et al. 2016)

> where ▼
> <wh, whe, her, ere, re>

Use n-grams from 3-6 plus word itself

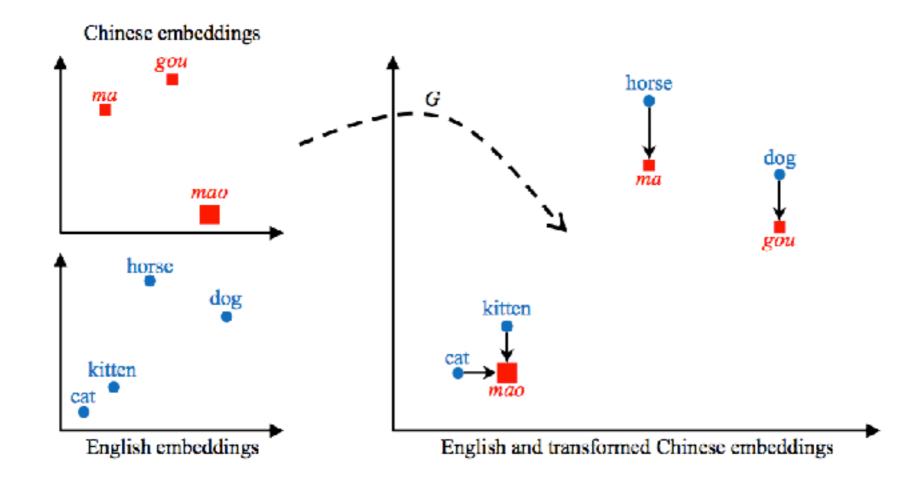
Multilingual Coordination of Embeddings (Faruqui et al. 2014)

We have word embeddings in two languages, and want them to match



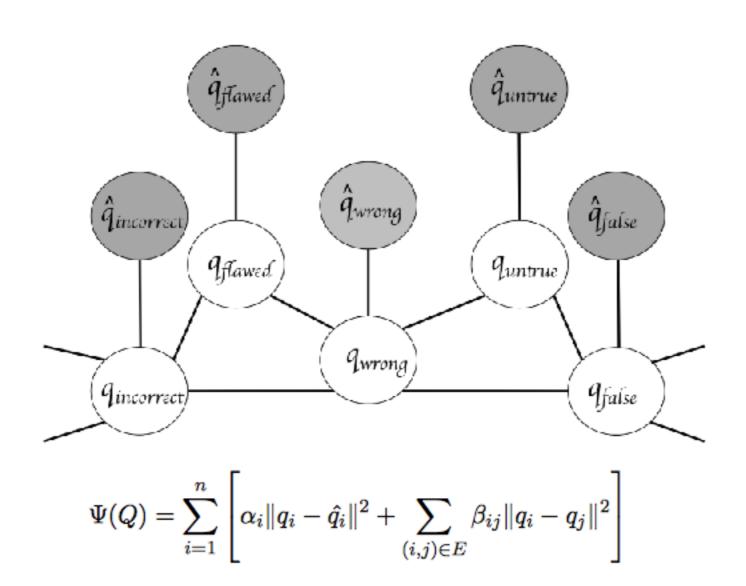
Unsupervised Coordination of Embeddings

- In fact we can do it with no dictionary at all!
 - Just use identical words, e.g. the digits (Artexte et al. 2017)
 - Or just match distributions (Zhang et al. 2017)



Retrofitting of Embeddings to Existing Lexicons

 We have an existing lexicon like WordNet, and would like our vectors to match (Faruqui et al. 2015)



Sparse Embeddings

- Each dimension of a word embedding is not interpretable
- Solution: add a sparsity constraint to increase the information content of non-zero dimensions for each word (e.g. Murphy et al. 2012)

Model	Top 5 Words (per dimension)
	well, long, if, year, watch
	plan, engine, e, rock, very
SVD_{300}	get, no, features, music, via
	features, by, links, free, down
	works, sound, video, building, section
	inhibitor, inhibitors, antagonists, receptors, inhibition
	bristol, thames, southampton, brighton, poole
NNSE ₁₀₀₀	delhi, india, bombay, chennai, madras
	pundits, forecasters, proponents, commentators, observers
	nosy, averse, leery, unsympathetic, snotty

De-biasing Word Embeddings (Bolukbasi et al. 2016)

Word embeddings reflect bias in statistics

Extreme she	Extreme he		Gender stereotype she-he ar	nalogies
 homemaker nurse receptionist librarian socialite 	 maestro skipper protege philosopher captain 	sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy	registered nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar	housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable
hairdresser	6. architect	volleyball-football	±	lovely-brilliant
7. nanny8. bookkeeper9. stylist	7. financier8. warrior9. broadcaster	queen-king waitress-waiter	Gender appropriate she-he a sister-brother	mother-father
10. housekeeper	magician	wanness-waner	ovarian cancer-prostate cance	a convent-monastery

 Identify pairs to "neutralize", find the direction of the trait to neutralize, and ensure that they are neutral in that direction

A Case Study: FastText

FastText Toolkit

- Widely used toolkit for estimating word embeddings https://github.com/facebookresearch/fastText/
- Fast, but effective
 - Skip-gram objective w/ character n-gram based encoding
 - Parallelized training in C++
 - Negative sampling for fast estimation (next class)
- Pre-trained embeddings for Wikipedia on many languages https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

Questions?