CS11-747 Neural Networks for NLP

Debugging Neural
Networks for NLP

Graham Neubig

P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2020/

https://phontron.com/class/nn4nlp2020/

INn Neural Networks,
Debugging Is Paramount!

Models are often complicated and opaque

Everything is a hyperparameter (network size,
model variations, batch size/strategy, optimizer/
learning rate)

Non-convex, stochastic optimization has no
guarantee of decreasing/converging loss

Understanding Your
Problem

A Typical Situation

* You've implemented a nice model
* You've looked at the code, and it looks OK
e Your accuracy on the test set is bad

- What do | do?

~ Possible Causes

- Training time problems

o |ack of model capacity

* |nability to train model properly
* Training time bug

- Decoding time bugs

 Disconnect between test and decoding
 Failure of search algorithm

- Overfitting
- Mismatch between optimized function and eval

Debugging at Iraining Time

|[dentitying Training Time
Problems

e | ook at the loss function calculated on the
training set

* |s the loss function going down?

* |s it going down basically to zero if you run
training long enough (e.g. 20-30 epochs)?

* |f not, does it go down to zero it you use very
small datasets”

s My Model Too Weak®

* Model size depends on task

* For language modeling, at least 512 nodes

* For natural language analysis, 128 or so may do
* Multiple layers are often better

* For long sequences (e.g. characters) may need
larger layers

Be Caretul of Multi-layer
Models

o Extra layers can help, but can also hurt if you're not careful due
to vanishing gradients

e Solutions:

Residual Connections (He et al. 2015) Highway Networks (Srivastava et al. 2015)

X
weight layer y=H(x,Wu) T(x,Wt)+x-(1-T(x,Wr))
F(x) l relu .
weight layer identity

Trouble w/ Optimization

* |f increasing model size doesn’t help, you may have
an optimization problem

-+ Possible causes:
e Bad optimizer
e Bad learning rate
e Bad initialization

 Bad minibatching strategy

Reminder: Optimizers

SGD: take a step in the direction of the gradient

SGD with Momentum: Remember gradients from past time
steps to prevent sudden changes

Adagrad: Adapt the learning rate to reduce learning rate for
frequently updated parameters (as measured by the variance of
the gradient)

Adam: Like Adagrad, but keeps a running average of
momentum and gradient variance

Many others: RMSProp, Adadelta, etc.
(See Ruder 2016 reference for more details)

| earning Rate

* Learning rate is an important parameter
e Joo low: will not learn or learn vey slowly

* Joo high: will learn tor a while, then tluctuate and
diverge

« Common strategy: start from an initial learning rate
then gradually decrease

* Note: need a different learning rate tor each optimizer!
(SGD defaultis 0.1, Adam 0.001)

INnitialization

e Neural nets are sensitive to Initialization, which results In
different sized gradients

e Standard initialization methods:

 Gaussian initialization: initialize with a zero-mean
Gaussian distribution

« Uniform range initialization: simply initialize uniformly
within a range

 Glorot initialization, He initialization: initialize in a
uniform manner, where the range is specified
according to net size

e [atter is common/detault, but read prior work carefully

Reminder:
Mini-batching iIn RNNS

this Is an example </s>
this is another </s> </s>
Paddin
| oss VoL ¢ ¢ J
| 1 11 @) |1 1 1
Calculation ©°1] ©°]1] [® _ _
} | | | ' Mask
),), W,),),
J W), J J
— = L
W,

Take Sum

Bucketing/Sorting

e |f we use sentences of different lengths, too much
padding and sorting can result in slow training

* o remedy this: sort sentences so similarly-lengthed
sentences are In the same batch

* But this can affect performance! (Morishita et al. 2017)

§..b) 32 sentences, Adam g) 16 sentences, Adam

g \a) b4 sentences, Adam
/ ' / / :
n | |
t C o
3 i3] B
4 4 ' 4
] = it i
2 2 2
1-. 1 R U A OO
e ' - ' C - - 0 '
0 IV 2 M AN 5M 0 IM M M aM EM 0 14 M 3M M4 M
A (d) B sentences, Adam A (e} 1742 words, Adam Ae (f) G4 sentences, SGD
il . , , i , ,
- &t 6}-
5 5p 5t-
A at- A

3 R— - e == shuffle

2 : : sre

trq

1 . : 1l 1 ' : —— 5r7_tra
%IV M I AN SM 0 IM 2M 3V a4 5w ¢ EM 10M 15M zom . tra.sre

Debugging at lest [ime

Training/Decoding
Disconnects

Usually your loss calculation and prediction will be
implemented in different functions

Especially true for structured prediction models (e.g.
encoder-decoders)

» See enc dec.py example from this class, which has
calc loss () and generate () functions

Like all software engineering: duplicated code is a source
of bugs!

Also, usually loss calculation is minibatched, generation not.

Debugging Minibatching

* Debugging mini-batched loss calculation
* Calculate loss with large batch size (e.g. 32)

* Calculate loss for each sentence individually
and sum

* The values should be the same (modulo
numerical precision)

e Create a unit test that tests this!

Debugging Structureo
Generation

* Your decoding code should get the same score as loss
calculation

e [est this:

« Call decoding function, to generate an output, and
keep track of its score

e Call loss function on the generated output
e The score of the two functions should be the same

e Create a unit test doing this!

Beam Search

* |Instead of picking one high-probability word,
maintain several paths

0 -1.27:

>Es>

<S>

e More In a later class

Debugging Search

* As you make search better, the model score should
get better (almost all the time)

* Run search with varying beam sizes and make sure
you get a better overall model score with larger
sizes

* Create a unit test testing this!

| ook At Your Data!

* Decoding problems can often be detected by
looking at outputs and realizing something Iis wrong

* e.g. The first word of the sentence is dropped
every time
> went to the store yesterday
> bought a dog

* e.g. our system was <unk>ing University of
Nebraska at Kearney

Quantitative Analysis

* Measure gains quantitatively. What is the phenomenon you
chose to focus on? Is that phenomenon getting better?

e You focused on low-frequency words: is accuracy on
low frequency words increasing?

e You focused on syntax: is syntax or word ordering
getting better, are you doing better on long-distance
dependencies?

e You focused on search: are you reducing the number
of search errors?

Example: compare-mt

* An example of this for quantitative analysis of
language generation results

https://github.com/neulab/compare-mt

* Calculates aggregate statistics about accuracy
of particular types of words or sentences, finds
salient test examples

¢ See example

https://github.com/neulab/compare-mt

Battling Overfitting

Symptoms of Overfitting

* [raining loss converges well, but test loss diverges

Loss Accuracy
D
f 0.9
2.0 0
0.0%
1.5 1
0.97
1.0 -
0.90
0.5 4 0.853 1
L - U
0.8 - -9 [est
0 20 Lty 0 -0 40

 No need to look at accuracy (right), only loss (left)!
Accuracy is a symptom of a different problem, discussed next.

Your Neural Net can Memorize your

Training Data
(Zhang et al. 2017)

e Your neural network has more parameters than training examples

* |t you randomly shuffle the training labels (there is no correlation

b/t input and labe

B—a frue labels
o—2 random labels |-
w—u shuffled pixels
=== random pixels |-
=& Caussian

s), it can still learn

4.0 1.0

=—a Inception DO b o = oo
3.57 o0 AlexNet n.8
30l ™= MLP1x512 0.7

time to overfit
test error

m—a |nception
o—o AlexNet

c O o o o
MNwWwbhs OO
T T

1.5 - o f{
o © © o0 weegr MLP 1x512
'ln ' 1 1 1 n‘l 1 1 1
5 10 15 20 25 00 02 0.4 0.6 0.8 1.0 0.0 0.2 04 06 08 1.0
thousand steps label corruption label corruption

(a) learning curves

(b) convergence slowdown (c) generalization error growth

Optimizers: Adaptive Gradient
Methods Tend to Overfit More

(Wilson et al. 2017)

* Adaptive gradient methods are fast, but have a
stronger tendency to overfit on small data

[— 5GD — HB — AdaGrad — RMSProp — Adam —— Adam (Default)
20 20—

18}
o 15
w o 16 AdaGrad: 11.340.51
o e B Adam\(Default): 12.30+0.16
“ 10 £ 14| \ LMWW I \ Adam:0.7810.25
3 - i VWt (W *,JW A
= v 12}
5 ks

8l e _
0 | . \ . SGD: 7.65+0.14—
0 50 100 150 200 250 0 50 100 150 200 250

Epoch Epoch

Reminder: Early Stopping,
| earning Rate Decay

 Neural nets have tons of parameters: we want to
prevent them from over-fitting

* We can do this by monitoring our performance on
held-out development data and stopping training
when It starts to get worse

e |t also sometimes helps to reduce the learning rate
and continue training

Reminder: Dev-driven
| earning Rate Decay

o Start w/ a high learning rate, then degrade learning
rate when start overfitting the development set (the
“newbob” learning rate schedule)

« Adam w/ Learning rate decay does relatively well for
MT (Denkowski and Neubig 2017)

WMT German-English

Adam
—a— SGD
15 20
Training Sentences (millions)

BLEU

14-

12

11

s WMT English-Finnish

Adam

—=— SGD
8 10 12 14
Training Sentences (millions)

BLEU

27

25

WMT Romanian-English

Adam
—&— SGD
4 6
Training Sentences (millions)

Reminder: Dropout
(Srivastava et al. 2014)

* Neural nets have lots of parameters, and are prone
to overtfitting

* Dropout: randomly zero-out nodes in the hidden
layer with probabillity p at training time only

+ Because the number of nodes at training/test is
different, scaling is necessary:

e Standard dropout: scale by p at test time

* |Inverted dropout: scale by 1/(1-p) at training time

Mismatch b/t Optimized
Function and Evaluation Metric

| 0SS Function,
Evaluation Metric

* |t is very common to optimize for maximum
iIkelihood for training

* But even though likelihood is getting better,
accuracy can get worse

Example w/ Classification

 |0ss and accuracy are de-correlated (see dev)

Loss Accuracy
D
? 0
2.0
0.0
1.5 1
0.9
1.0 4
0.90 4
0.5 4 0.853 1
L -—®— Uan
0.86 - -9 [est
0 20 40 0 -0 40

 Why? Model gets more confident about its mistakes.

BLEU

A Starker Example
(Koehn and Knowles 2017)

e Better search (=better model score) can result in
worse BLEU scorel

Czech-English English-Czech
4241 y
24 230 2457824 o5’y
31 s = TS 245
42" 3040, 23 g2 7
S 30 N
30 ©29. - o/
’ & - 20%
'29.4 2
®
21
O Unnormzlized 28.5 O Unncrmalized
Normalized 3 20 Normalizec 1%9
1 2 4 3 12 2030 50 10C 200 500 1,000 1 2 4 8§ 12 2030 50 100 200 5CC 1,000
Bezm Size Beam Size

 Why"? Shorter sentences have higher likelihood, better
search finds them, but BLEU likes correct-length sentences.

Managing Loss Function/
Eval Metric Differences

* Most principled way: use structured prediction
technigues to be discussed in future classes

e Structured max-margin training
* Minimum risk training
* Reinforcement learning

* Reward augmented maximum likelihood

A Simple Method:
Farly Stopping w/ Eval Metric

Loss Accuracy

2.5 -
? 0.98 A

~.| stop here

2.0 A 0.96 A

0.94 -
1.5 A

0.92 -

1.0 -
W | 0.90 -

0.5 - 0.88 A

—&— frain
—8— fest

0.86--L

(et
not here | =

0 20 40 0 20 40

Final Words

Reproducing Previous Work

* Reproducing previous work Is hard because
everything is a hyper-parameter

 |f code is released, find and reduce the differences
one by one

* |f code is not released, try your best

* Feel free to contact authors about details, they will
usually respond!

Questions?

