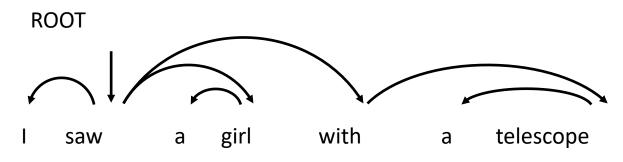


CS11-747 Neural Networks for NLP Generate Trees Incrementally

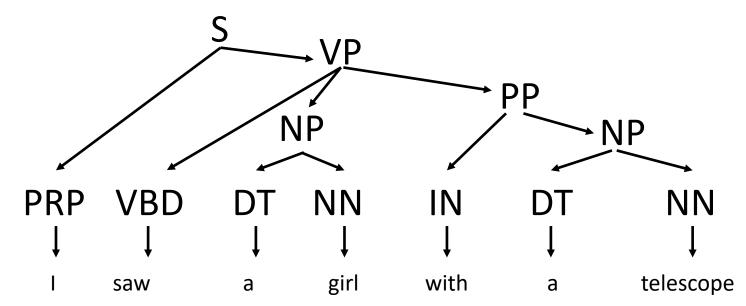
Graham Neubig gneubig@cs.cmu.edu Language Technologies Institute Carnegie Mellon University

The Two Two Most Common of Linguistic Tree Structures

• **Dependency Trees** focus on relations between words



• **Phrase Structure** models the structure of a sentence



Semantic Parsing: Another Representative Text-to-Structure Task

Transform Natural Language Intents to Executable Programs

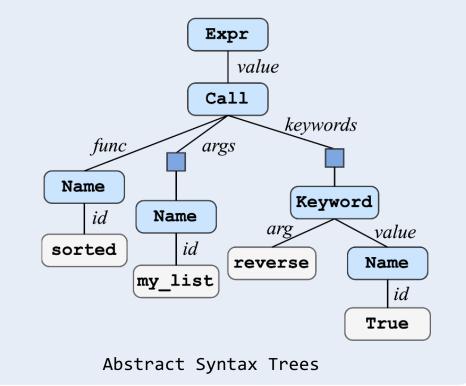
° []

Sort my_list in descending order

sorted(my_list, reverse=True)

Example: Python code generation

Structured Meaning Representations



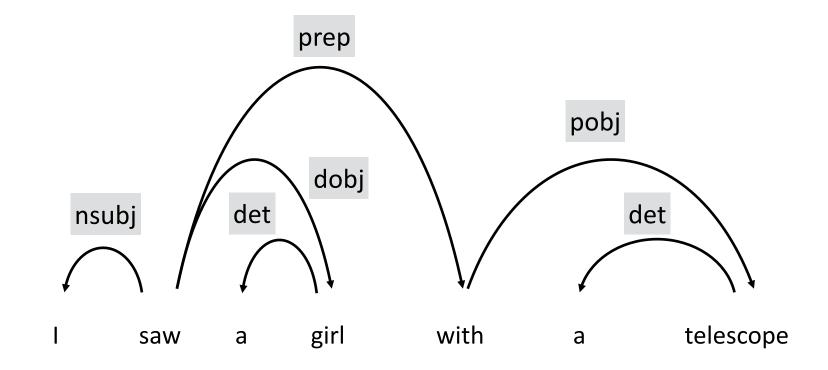
Parsing: Generate Linguistic Structures of Sentences

- Predicting linguistic structure from input sentences
- Transition-based models
 - step through actions one-by-one until we have output
 - like history-based model for POS tagging
- Dynamic Programming-based models
 - calculate probability of each edge/constituent, and perform some sort of dynamic programming
 - like linear CRF model for POS

Shift-reduce Dependency Parsing

Why Dependencies?

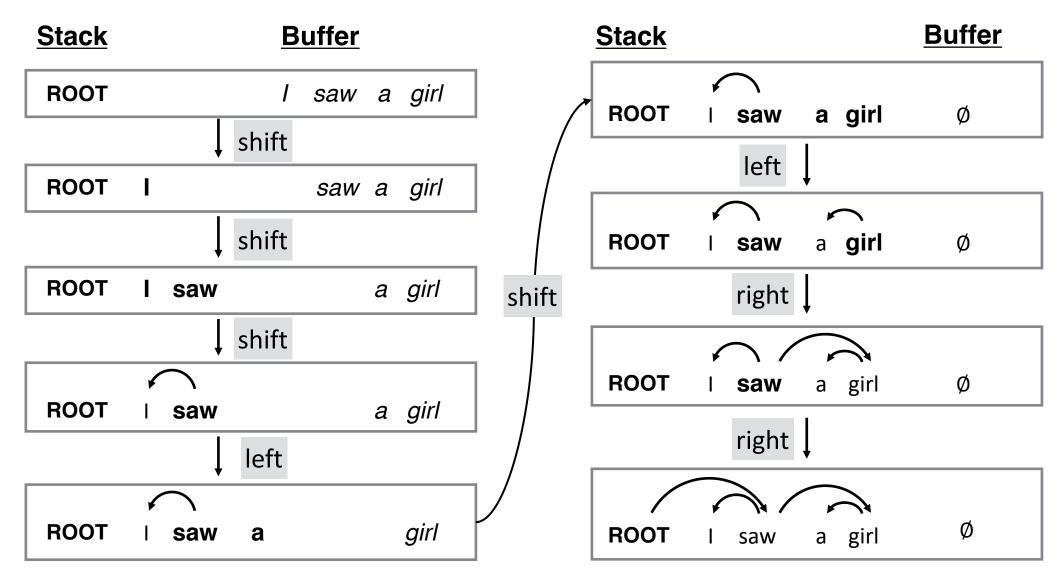
- Dependencies are often good for semantic tasks, as related words are close in the tree
- It is also possible to create labeled dependencies, that explicitly show the relationship between words



Arc Standard Shift-Reduce Parsing (Yamada & Matsumoto 2003, Nivre 2003)

- Process words one-by-one left-to-right
- Two data structures
 - Queue: of unprocessed words
 - Stack: of partially processed words
- At each point choose
 - shift: move one word from queue to stack
 - reduce left: top word on stack is head of second word
 - reduce right: second word on stack is head of top word
- Learn how to choose each action with a classifier

Shift Reduce Example

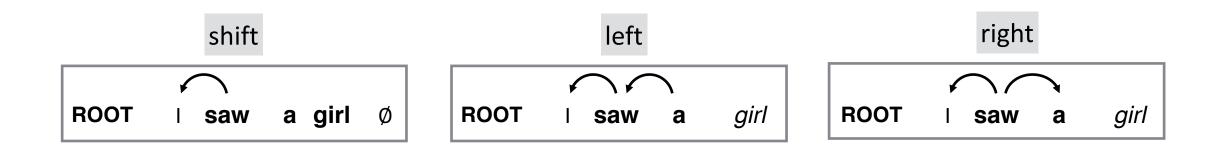


Classification for Shift-reduce

• Given a configuration

<u>Stack</u>		<u>Buffer</u>		
	$\widehat{}$			
ROOT	I saw	a girl		

• Which action do we choose?



Making Classification Decisions

- Extract features from the configuration
 - what words are on the stack/buffer?
 - what are their POS tags?
 - what are their children?
- Feature combinations are important!
 - Second word on stack is verb **AND** first is noun: "right" action is likely
- Combination features used to be created manually (e.g. Zhang and Nivre 2011), now we can use neural nets!

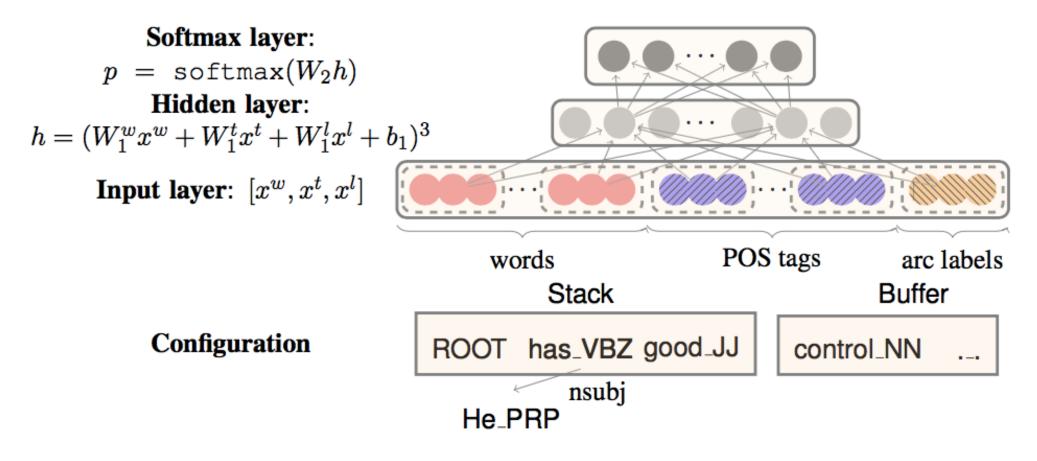
Alternative Transition Methods

- All previous methods did left-to-right
- Also possible to do top-down -- pick the root first, then descend, e.g. Ma et al. (2018)
- Also can do **easy-first** -- pick the easiest link to make first, then proceed from there, e.g. Kiperwasser and Goldberg (2016)

A Feed-forward Neural Model for Shift-reduce Parsing (Chen and Manning 2014)

A Feed-forward Neural Model for Shift-reduce Parsing (Chen and Manning 2014)

- Extract non-combined features (embeddings)
- Let the neural net do the feature combination

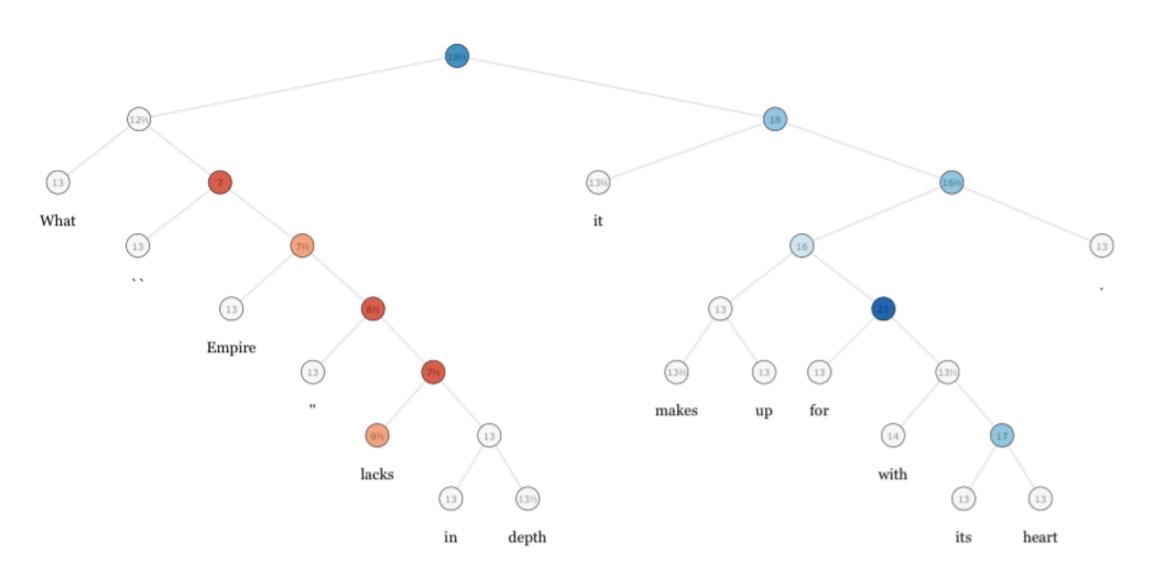


What Features to Extract?

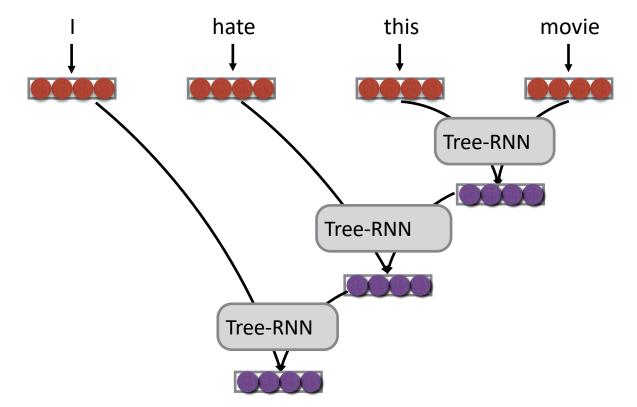
- The top 3 words on the stack and buffer (6 features)
 - s1, s2, s3, b1, b2, b3
- The two leftmost/rightmost children of the top two words on the stack (8 features)
 - lc1(si), lc2(si), rc1(si), rc2(si) i=1,2
- leftmost and rightmost grandchildren (4 features)
 - lc1(lc1(si)), rc1(rc1(si)) i=1,2
- POS tags of all of the above (18 features)
- Arc labels of all children/grandchildren (12 features)

Using Tree Structure in NNs: Syntactic Composition

Why Tree Structure?



Recursive Neural Networks (Socher et al. 2011)



tree-rnn $(\boldsymbol{h}_1, \boldsymbol{h}_2) = \tanh(W[\boldsymbol{h}_1; \boldsymbol{h}_2] + \boldsymbol{b})$

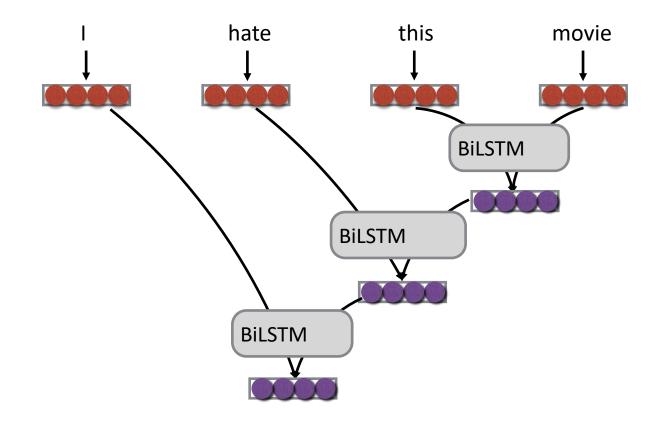
- Can also parameterize by constituent type \rightarrow
 - different composition behavior for NP, VP, etc.

Tree-structured LSTM (Tai et al. 2015)

- Child Sum Tree-LSTM
 - Parameters shared between all children (possibly based on grammatical label, etc.)
 - Forget gate value is different for each child → the network can learn to "ignore" children (e.g. give less weight to non-head nodes)
- N-ary Tree-LSTM
 - Different parameters for each child, up to N (like the Tree RNN)

Bi-LSTM Composition (Dyer et al. 2015)

- Simply read in the constituents with a BiLSTM
- The model can learn its own composition function!



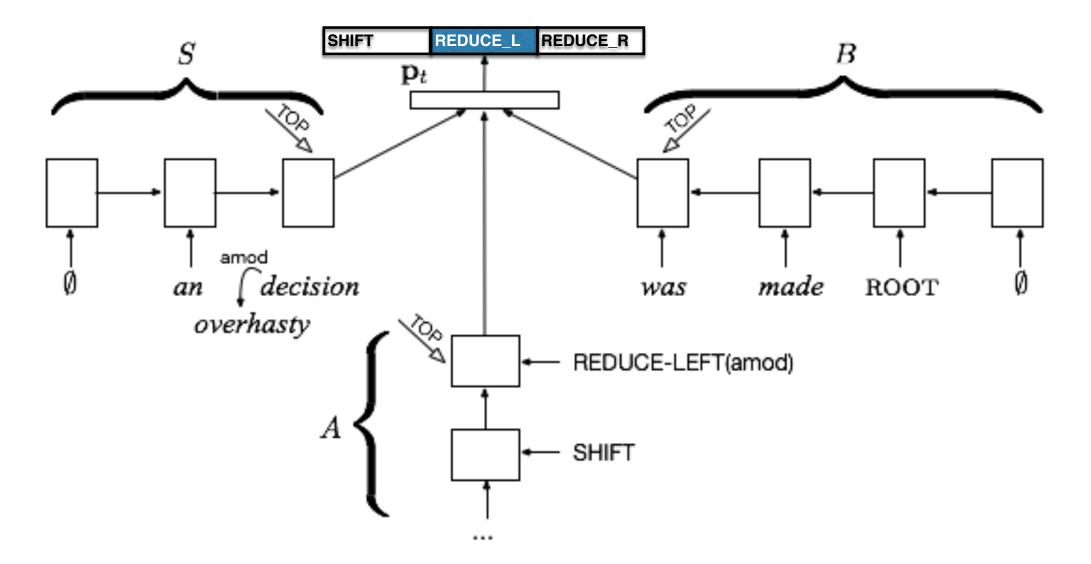
Let's Try it Out! tree-lstm.py

Stack LSTM: Dependency Parsing w/ Less Engineering, Wider Context (Dyer et al. 2015)

Encoding Parsing Configurations w/ RNNs

- We don't want to do feature engineering (why leftmost and rightmost grandchildren only?!)
- Can we encode all the information about the parse configuration with an RNN?
- Information we have: stack, buffer, past actions

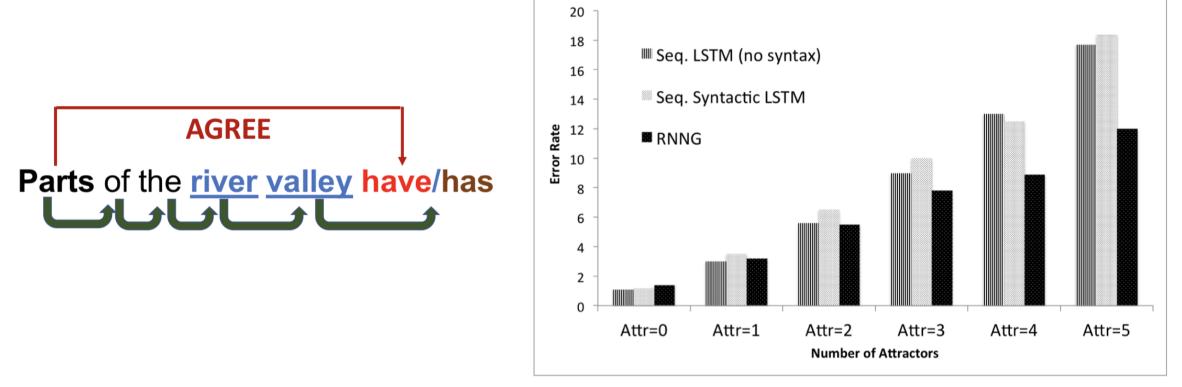
Encoding Stack Configurations w/ RNNs



(Slide credits: Chris Dyer)

Why Linguistic Structure?

- Regular linear language models do quite well
- But they may not capture phenomena that inherently require structure, such as long-distance agreement
- e.g. Kuncoro et al (2018) find agreement with distractors is much better with syntactic model

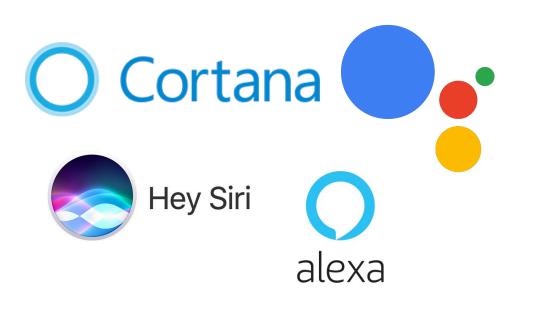


CS11-747 Neural Networks for NLP Neural Semantic Parsing

Pengcheng Yin pcyin@cs.cmu.edu Carnegie Mellon University

[Some contents are adapted from talks by Graham Neubig]

Semantic Parsers: Natural Language Interfaces to Computers



Virtual Assistants

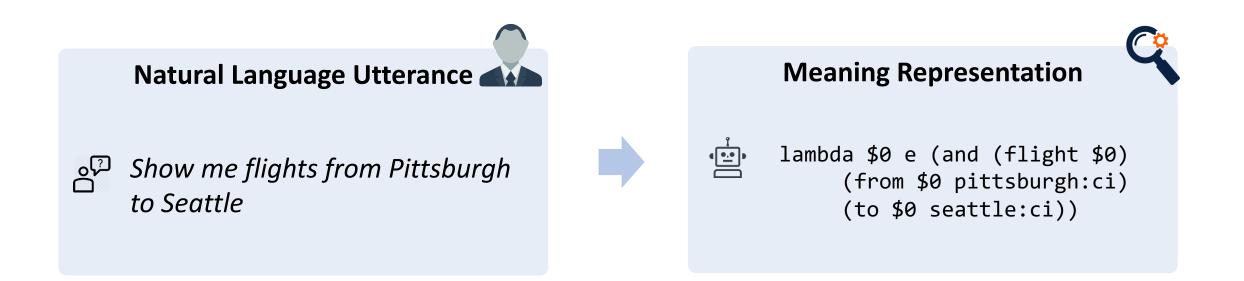
Set an alarm at 7 AM
 Remind me for the meeting at 5pm
 Play Jay Chou's latest album

💿 😑 Untitled-1	
 Untitled-1 	
1 my_list = [3, 5, 1]	
2 sort in descending order	•
<pre>3 sorted(my_list, reverse=Tr</pre>	ue)
4	
5	
گ master* ↔ Python 3.6.5 64-t	oit 🛞

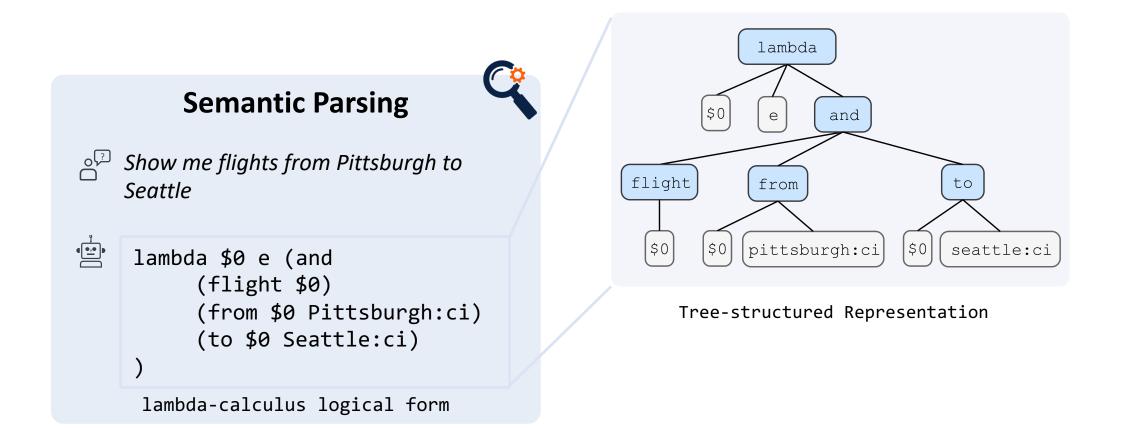
Natural Language Programming Sort my_list in descending order Copy my_file to home folder Dump my_dict as a csv file output.csv

The Semantic Parsing Task

Parsing natural language utterances into machine-executable meaning representations

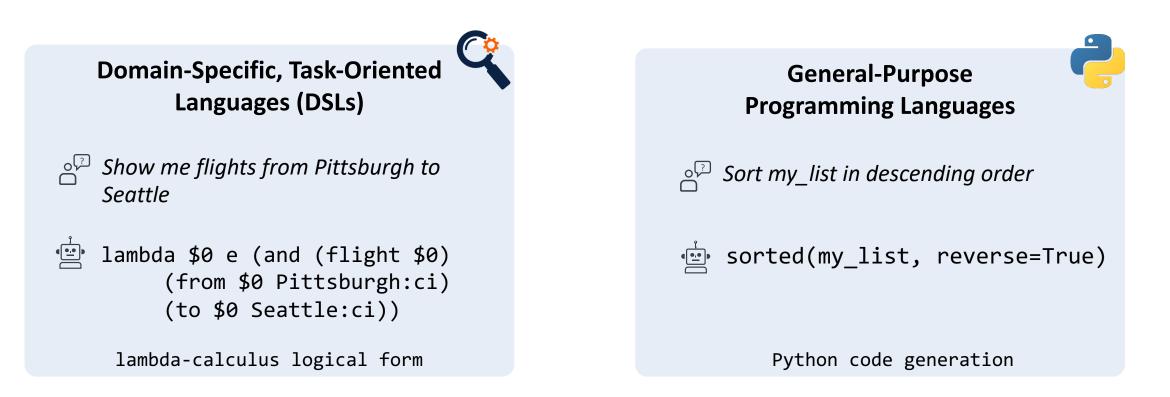


Meaning Representations have Strong Structures



Machine-executable Meaning Representations

Translating a user's **natural language utterances** (e.g., queries) into machineexecutable **formal meaning representations** (e.g., logical form, SQL, Python code)



Clarification about Meaning Representations (MRs)

Machine-executable MRs (our focus today) executable programs to accomplish a task **MRs for Semantic Annotation** capture the semantics of natural language sentences

> Machine-executable **Meaning Representations**

دري Show me flights from Pittsburgh to Seattle

lambda \$0 e (and (flight \$0) (from \$0 pittsburgh:ci) (to \$0 seattle:ci))

••••

Lambda Calculus Logical Form

Lambda Calculus

Python, SQL, ...

Meaning Representations For Semantic Annotation

The boy wants to go

(want-01 :arg0 (b / boy) :arg1 (g / go-01))

Abstract Meaning Representation (AMR)

Abstract Meaning Representation (AMR), Combinatory Categorical Grammar (CCG)

Workflow of a Semantic Parser

User's Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda \$0 e (and (flight \$0)
 (from \$0 pittsburgh:ci)
 (to \$0 seattle:ci))

Execute Programs against KBs

Execution Results (Answer)

Alaska Air 119
 American 3544 -> Alaska 1101
 ...

Semantic Parsing Datasets

Domain-Specific, Task-Oriented Languages (DSLs)

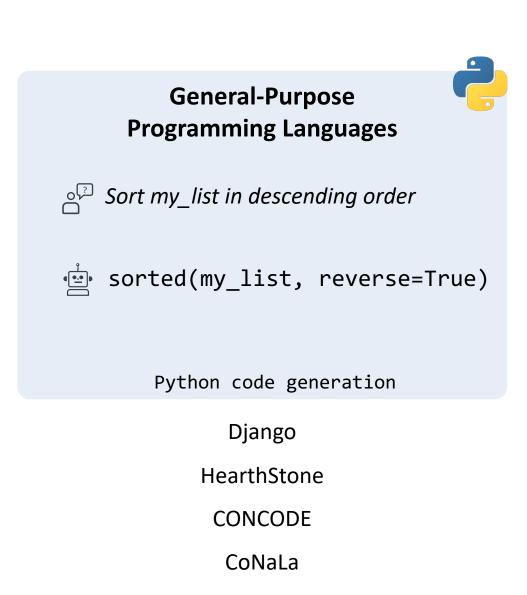
Show me flights from Pittsburgh to Seattle

'
 lambda \$0 e (and (flight \$0)
 (from \$0 Pittsburgh:ci)
 (to \$0 Seattle:ci))

lambda-calculus logical form

GeoQuery / ATIS / JOBs WikiSQL / Spider

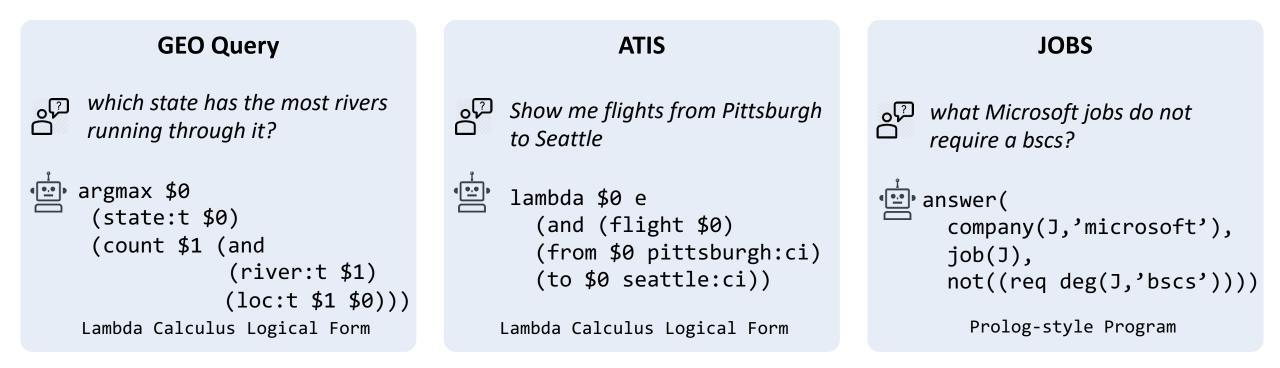
IFTTT



JulCe

GEO Query, ATIS, JOBS

- GEO Query 880 queries about US geographical information
- ATIS 5410 queries about flight booking and airport transportation
- Jobs 640 queries to a job database



Text-to-SQL Tasks

Natural Language Questions with Database Schema

Input Utterance

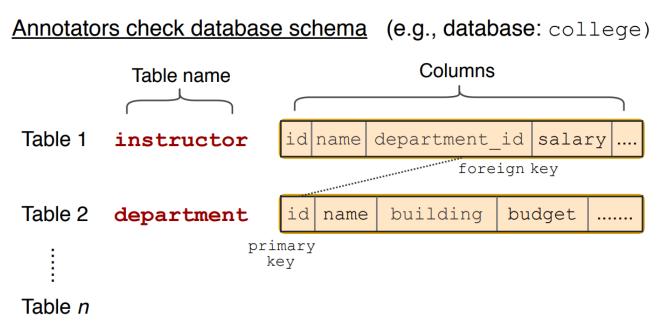
Show me flights from Pittsburgh to Seattle

Flight				Airport	
FlightNo	<u>UniqueId</u>		- 11	Name	<u>UniqueId</u>
Departure	<u>foreign key</u>	+1		CityName	<u>string</u>
Arrival	<u>foreign key</u>			PublicTransport	<u>boolean</u>

SQL Query

SELECT Flight.FlightNo FROM Flight JOIN Airport as DepAirport ON Flight.Departure == DepAirport.Name JOIN Airport as ArvAirport ON Flight.Arrival == ArvAirport.Name WHERE DepAirport.CityName == Pittsburgh AND ArvAirport.CityName == Seattle

Spider



Annotators create:

Complex question	What are the name and budget of the departments with average instructor salary greater than the overall average?	
Complex SQL	<pre>SELECT T2.name, T2.budget FROM instructor as T1 JOIN department as T2 ON T1.department_id = T2.id GROUP BY T1.department_id HAVING avg(T1.salary) > (SELECT avg(salary) FROM instructor)</pre>	

- Examples from 200 databases
- Target SQL queries involve joining fields over multiple tables
- Non-trivial Compositionality
 - Nested queries
 - Set Union

...

https://yale-lily.github.io

[Yu et al., 2018]

Semantic Parsing Datasets

Domain-Specific, Task-Oriented Languages (DSLs)

Show me flights from Pittsburgh to Berkeley

'
 lambda \$0 e (and (flight \$0)
 (from \$0 Pittsburgh:ci)
 (to \$0 Berkeley:ci))

lambda-calculus logical form

GeoQuery / ATIS / JOBs WikiSQL / Spider

IFTTT

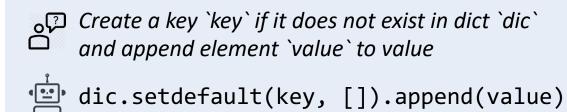


The CoNALA Code Generation Dataset

```
Get a list of words `words` of a file 'myfile'
Get a list of words `words` of a file 'myfile'
words = open('myfile').read().split()
```

```
Copy the content of file 'file.txt' to file 'file2.txt'
```

```
'
shutil.copy('file.txt', 'file2.txt')
```



- 2,379 training and 500 test examples
- Natural Language queries collected from
 StackOverflow
- Manually annotated, high quality natural language queries
- Code is highly expressive and compositional

Supervised Learning of Semantic Parsers

User's Natural Language Query

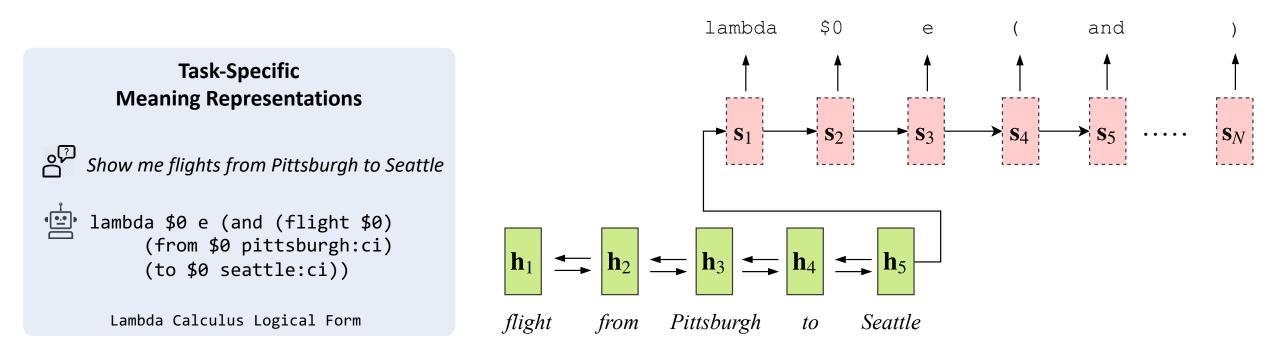
Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

```
lambda $0 e (and (flight $0)
    (from $0 pittsburgh:ci)
    (to $0 seattle:ci))
```

Train a neural semantic parser with source natural language utterances and target programs

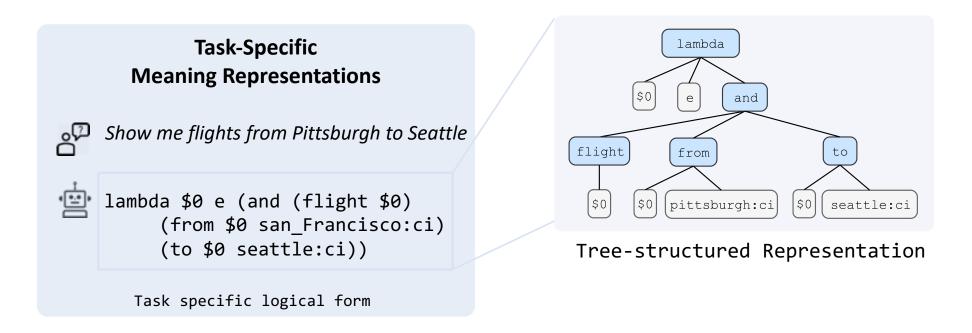
Semantic Parsing as Sequence-to-Sequence Transduction



- Treat the target meaning representation as a sequence of surface tokens
- Reduce the (structured prediction) task as another sequence-to-sequence learning problem

Issues with Predicting Linearized Programs

- Meaning Representations (e.g., a database query) have strong underlying structures!
- **Issue** Using vanilla seq2seq models ignore the rich structures of meaning representations, and could generate invalid outputs that are not trees



Core Research Question for Better Models

How to add inductive biases to networks a to better capture the structure of programs?

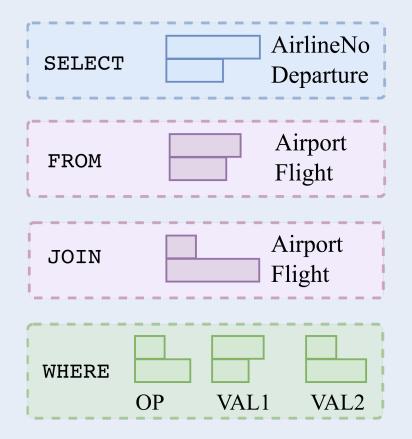
Encode Utterance and In-Domain Knowledge Schema

Input Utterance

Show me flights from Pittsburgh to Berkeley

Flight			Airport	
FlightNo	<u>UniqueId</u>	- 11	Name	<u>UniqueId</u>
Departure	<u>foreign key</u>		CityName	<u>string</u>
Arrival	<u>foreign key</u>		PublicTransport	<u>boolean</u>

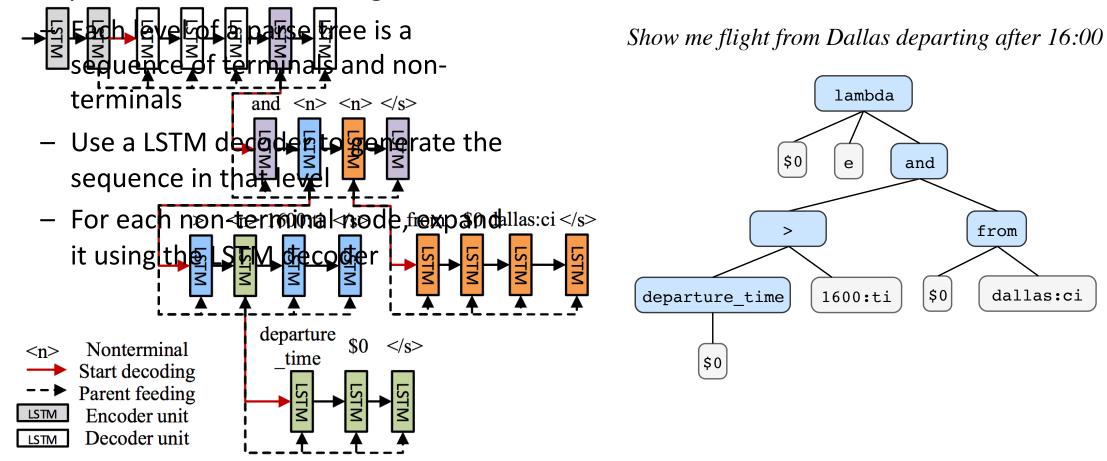
Predict Programs Following Task-Specific Program Structures



[Xu et al., 2017; Yu et al., 2018]

Structure-aware Decoding for Semantic Parsing

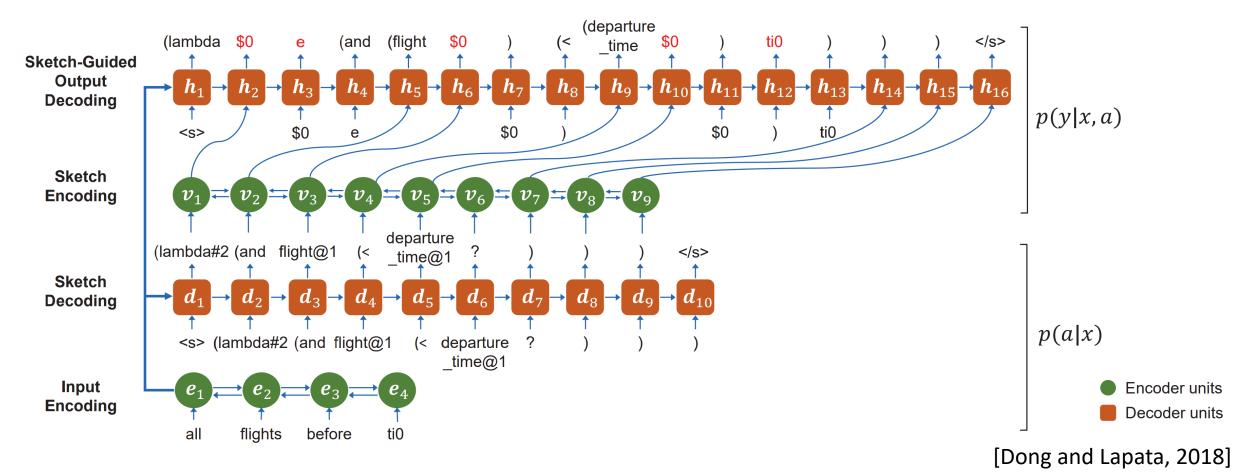
- **Seq2Tree** Generate the parse tree of a program using a hierarchy of recurrent neural decoders following the tree structure
- Sequence dotree Decoding Process



[Dong and Lapata, 2016]

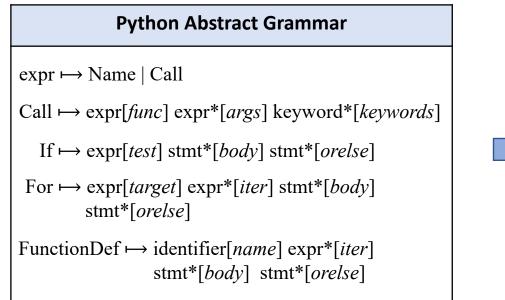
Structure-aware Decoding (Cont'd)

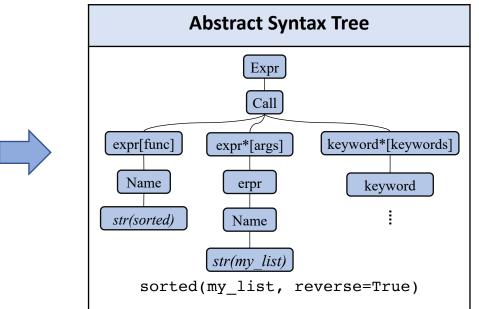
- **Coarse-to-Fine Decoding** decode a coarse **sketch** of the target logical form first and then decode the full logical form conditioned on both the input query and the sketch
- Explicitly model a **coarse global structure** of the logical form, and use it to guide the generation of the **fine-grained structure**



Grammar/Syntax-driven Semantic Parsing

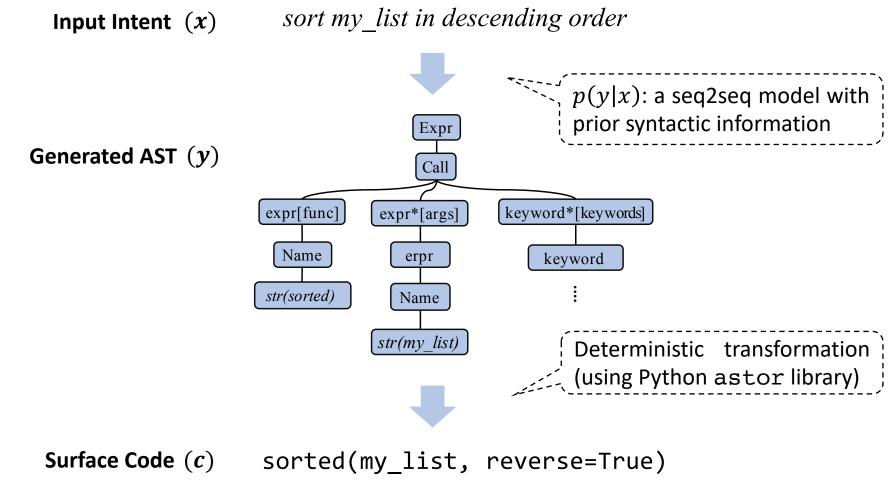
- Previously introduced methods could generate tree-structured representations but cannot guarantee they are gramatically correct.
- Meaning (e.g., Python) have strong underlying grammar/syntax
- How can we explicitly leverage the grammar of programs for better generation?





Grammar/Syntax-driven Semantic Parsing

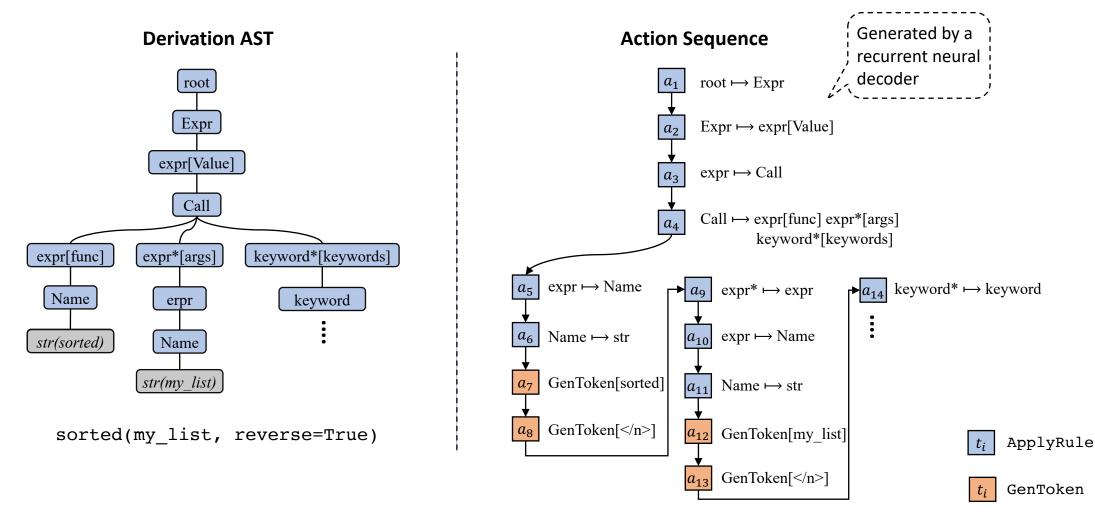
• **Key Idea** use the grammar of the target meaning representation (Python AST) as prior symbolic knowledge in a neural sequence-to-sequence model



[Yin and Neubig, 2017; Rabinovich *et al.*, 2017]

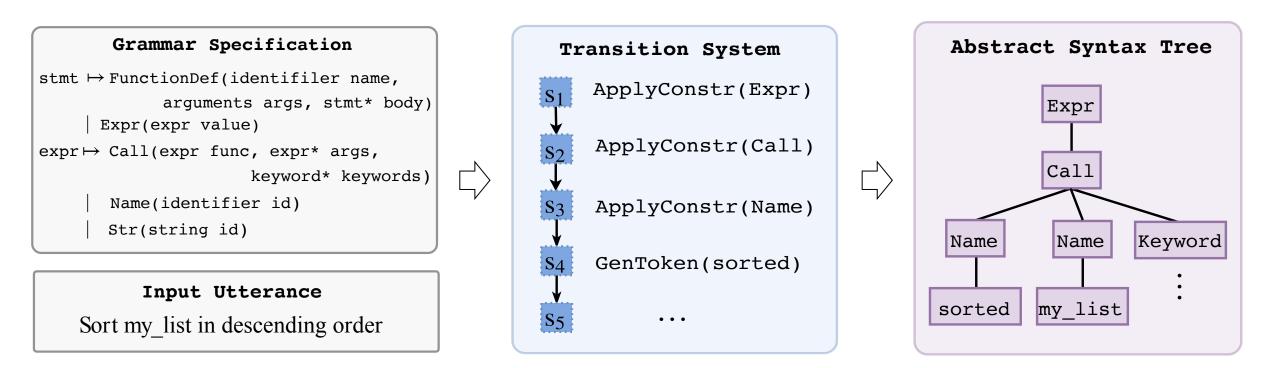
Grammar/Syntax-driven Semantic Parsing

- Factorize the generation story of an AST into sequential application of *actions* $\{a_t\}$:
 - ApplyRule[r]: apply a production rule r to the frontier node in the derivation
 - GenToken[v]: append a token v (e.g., variable names, string literals) to a terminal



TranX: Transition-based Abstract SyntaX Parser

- Convenient interface to specify task-dependent grammar in plain text
- Customizable conversion from abstract syntax trees to domain-specific programs
- Built-in support for many languages: Python, SQL, Lambda Calculus, Prolog...



github.com/pcyin/tranX

[Yin and Neubig 2018, Yin and Neubig 2019]

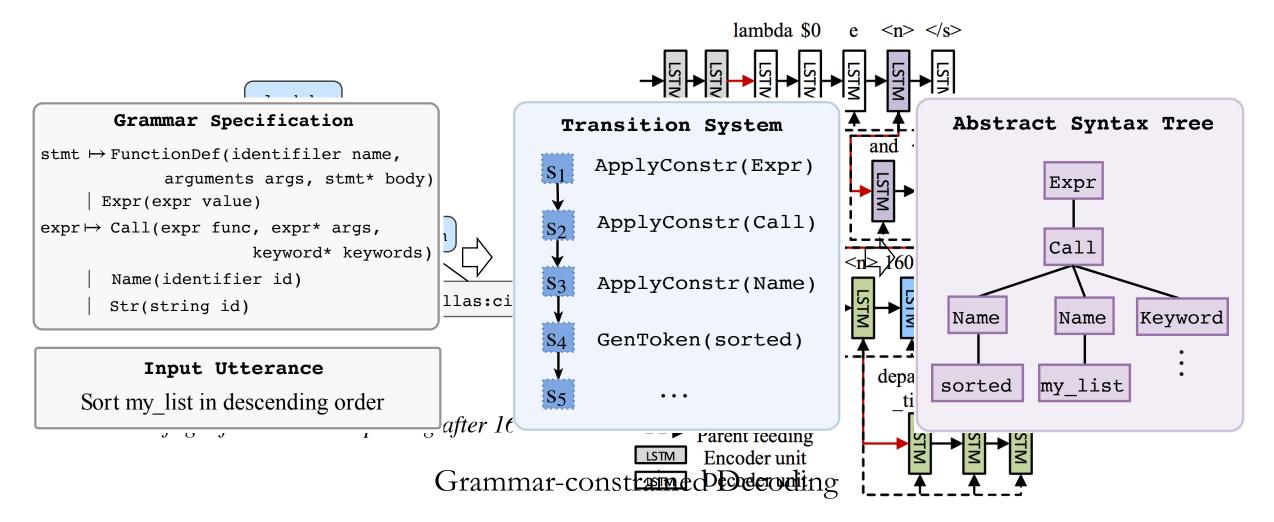
Side Note: Importance of Modeling Copying

- Modeling copying is very important for neural semantic parsers!
- Out-of-vocabulary entities (e.g., city names, date time) often appear in the input utterance
- Neural seq2seq models like to hallucinate entities not in the input utterance ⁽²⁾



Summary: Supervised Learning of Semantic Parsers

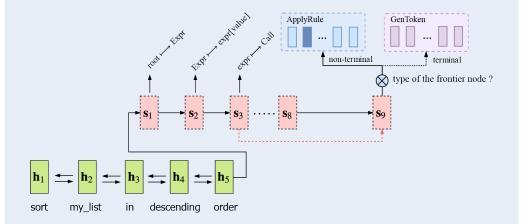
Key Research Question design decoders to capture the structure of programs



Structure-aware Decoding

Supervised Learning: the Data Inefficiency Issue

Supervised Parsers are Data Hungry



Purely supervised neural semantic parsing models require large amounts of training data

Data Collection is Costly

Copy the content of file 'file.txt' to file 'file2.txt'
shutil.copy('file.txt','file2.txt')

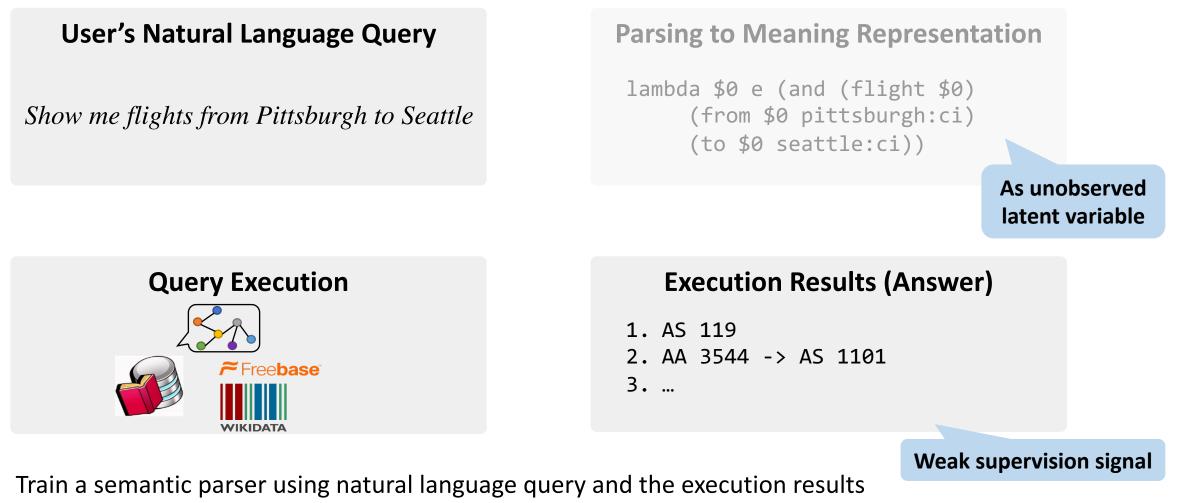
Get a list of words `words` of a file 'myfile'
words = open('myfile').read().split()

Check if all elements in list `mylist` are the same
len(set(mylist)) == 1

Collecting parallel training data costs and

*Examples from conala-corpus.github.io [Yin et al., 2018] 1700 USD for <3K Python code generation examples

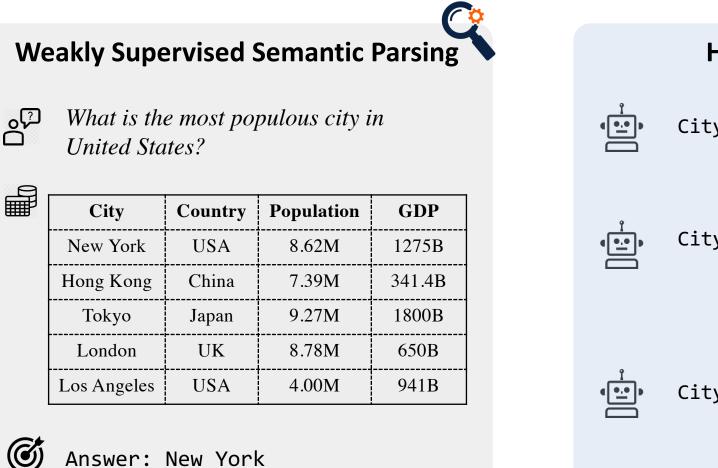
Weakly-supervised Learning of Semantic Parsers



(a.k.a. Semantic Parsing with Execution)

[Clarke *et al.*, 2010; Liang *et al.*, 2011]

Weakly-supervised Parsing as Reinforcement Learning



City.OrderBy(Population)
 .First() => Result: Tokyo

City.Filter(Country=='USA')

.OrderBy(Population)

.First() => Result: New York

City.Filter(Country=='USA')

.OrderBy(GDP)

.First() => Result: New York

Weakly-supervised Learning -- Challenges

Hypothesized Programs

City.OrderBy(Population)
 .First() => Result: Tokyo

City.Filter(Country=='USA')
 .OrderBy(Population)
 .First() => Result: New York

City.Filter(Country=='USA')
.OrderBy(GDP)
.First() => Result: New York

 (\mathbf{X})

Large Search Space

Exponentially large search space w.r.t. the size of programs

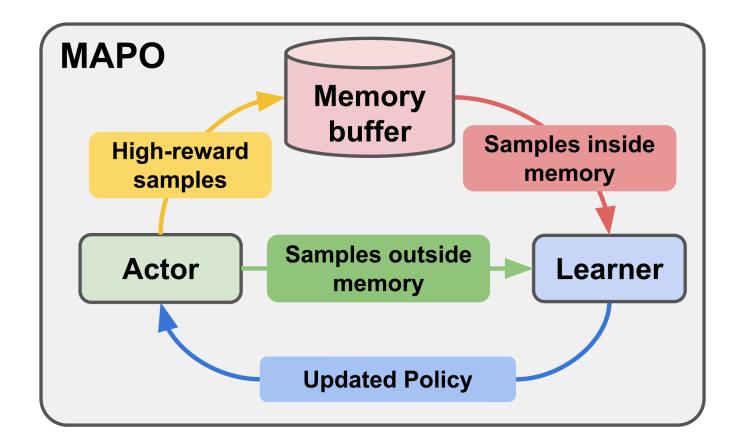
Very Sparse Rewards

Only very few programs are actually correct

Spurious Programs

Spurious programs could also hit the correct answer, leading to noisy reward signals.

Efficient Search: Cache High-reward Programs

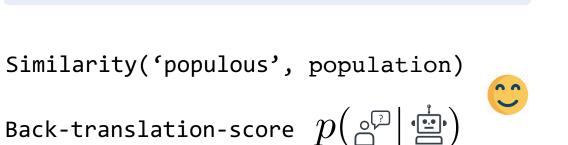


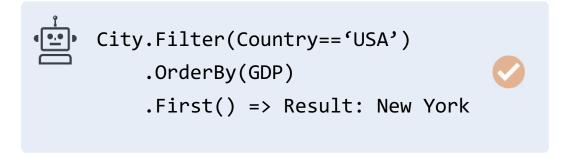
- Use a memory buffer to cache high-rewarding logical forms sampled so far
- During training, bias towards high-rewarding queries in the memory buffer

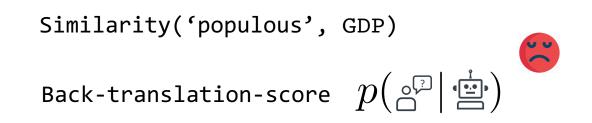
[Liang et al., 2018]

Tackle Spurious Programs using Heuristics

 \bigcirc What is the most populous city in United States?







[Guu et al., 2017; Misra et al., 2018; Cheng et al., 2018]

Conclusion: Workflow of a Semantic Parser

User's Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda \$0 e (and (flight \$0)
 (from \$0 san_Francisco:ci)
 (to \$0 seattle:ci))

Execution Results (Answer)

1. AS 119 2. AA 3544 -> AS 1101 3. ...

Conclusion: Two Learning Paradigms

Supervised Semantic Parsing

	$\boxed{?}$
0	\mathbf{v}
\bigcirc	n
XXXX	

What is the most populous city in United States?

City.Filter(Country=='USA')

.OrderBy(Population)
.First() => Result: New York

Tree-based Decoding

Grammar-constrained Decoding

Weakly Supervised Semantic Parsing

What is the most populous city in United States?

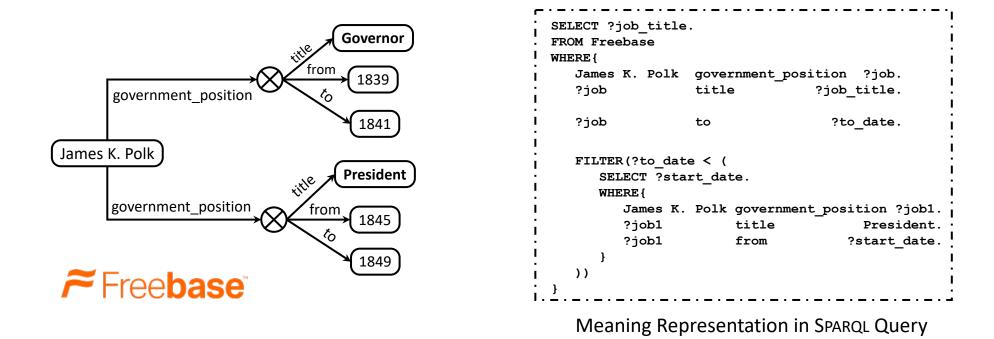
City	Country	Population	GDP
New York	USA	8.62M	1275B
Hong Kong	China	7.39M	341.4B
Tokyo	Japan	9.27M	1800B

Answer: New York

Efficient Exploration over Large Search Space Tackle Spurious Programs

Challenge: Natural Language is Highly Compositional

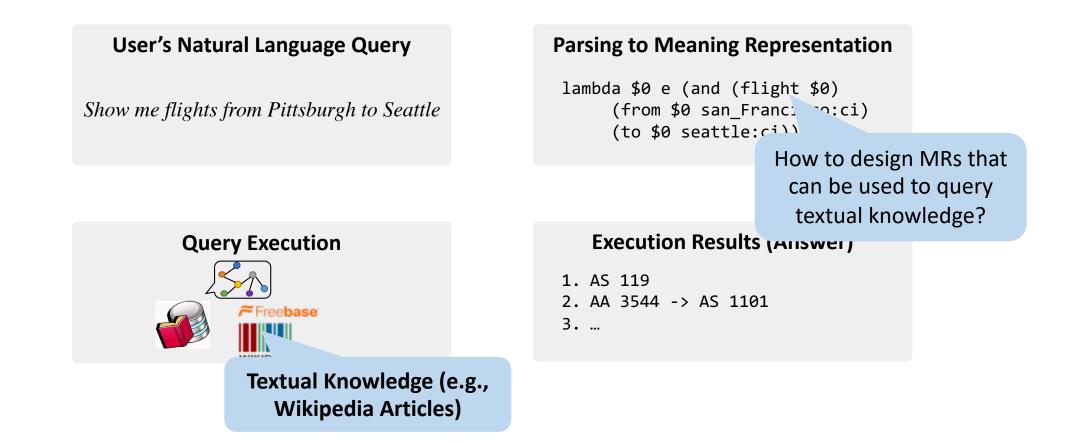
Q: what was James K. Polk before he was president?



• Sometimes even a short NL phrase/clause has complex structured grounding

Challenge: Scale to Open-domain Knowledge

- Most existing works focus on parsing natural language to queries to structured, curated knowledge bases
- Most of the world's knowledge has unstructured, textual form!
 - Machine Reading Comprehension tasks (e.g., SQUAD) use textual knowledge



Final Notes: Challenges

Depth of Semantic Compositionality



Supplementary Slides

More Semantic Parsing Datasets

WikiSQL Dataset

Table: CFLDraft					Question:
Pick #	CFL Team	Player	Position	College	How many CFL teams are from York College?
27	Hamilton Tiger-Cats	Connor Healy	DB	Wilfrid Laurier	SQL:
28	Calgary Stampeders	Anthony Forgone	OL	York	SELECT COUNT CFL Team FROM
29	Ottawa Renegades	L.P. Ladouceur	DT	California	CFLDraft WHERE College = "York"
30	Toronto Argonauts	Frank Hoffman	DL	York	Result:
•••			•••		2

- 80,654 examples of Table, Question, SQL Query and Answer
- **Context** a small, single database table extracted from a Wikipedia article
- Target an SQL query

HearthStone (HS) Card Dataset

- Description: properties/fields of an HearthStone card
- Target code: implementation as a Python class from HearthBreaker

Utterance (Card Property)

<name> Divine Favor </name> <cost> 3 </cost> <desc> Draw cards until you have as many in hand as your opponent </desc>

Target Code (Python class)

IFTTT Dataset

- Over 70K user-generated task completion snippets crawled from ifttt.com
- Wide variety of topics: home automation, productivity, etc.
- Domain-Specific Language: IF-THIS-THEN-THAT structure

https://ifttt.com/applets/1p-autosaveyour-instagram-photos-to-dropbox IFTTT Natural Language Query and Meaning Representation

Autosave your Instagram photos to Dropbox

IF Instagram.AnyNewPhotoByYou
THEN Dropbox.AddFileFromURL

Domain-Specific Programming Language

Django Annotation Dataset

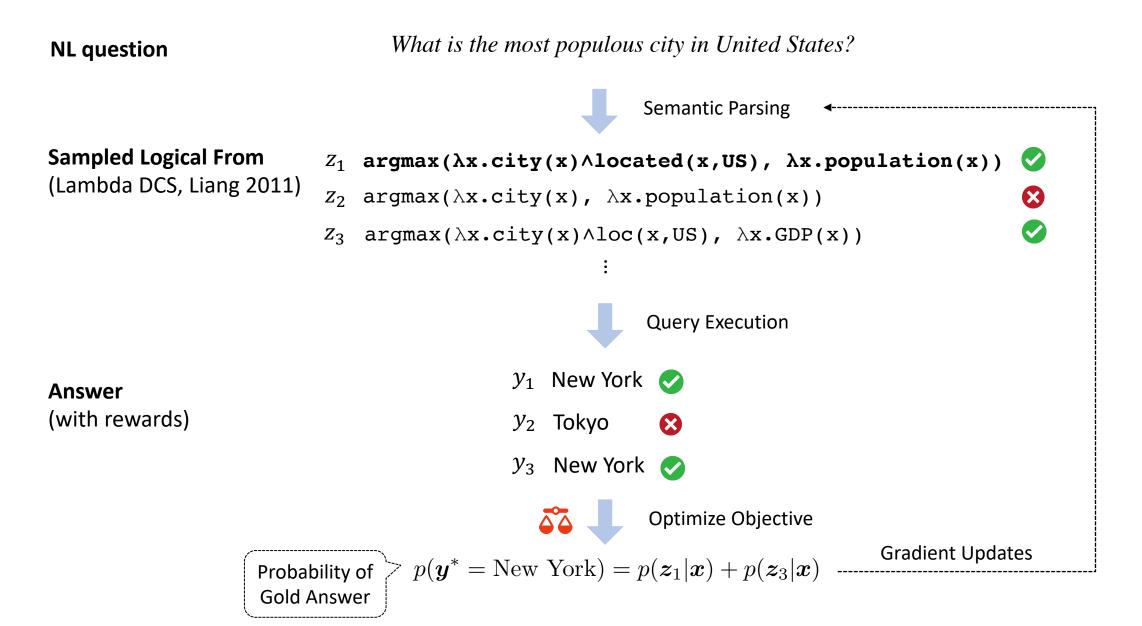
- Description: manually annotated descriptions for 10K lines of code
- Target code: one liners
- Covers basic usage of Python like variable definition, function calling, string manipulation and exception handling

Utterance *call the function _generator, join the result into a string, return the result*

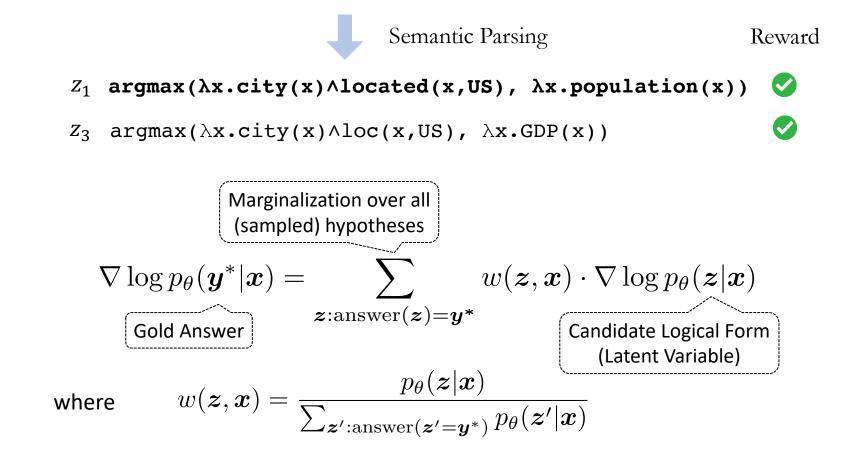
Target return ''.join(_generator())

Notes for Weakly Supervised Parsing

Weakly-supervised Parsing as Reinforcement Learning



Maximum Marginal Likelihood Training Objective

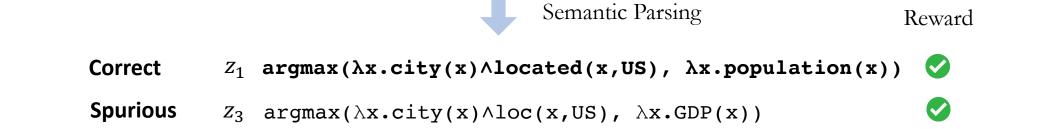


• Intuitively, the gradient from each candidate logical form is weighted by its normalized probability. The more likely the logical form is, the higher the weight of its gradient

Weakly-supervised Learning Issue 1: Spurious Logical Forms

• **Spurious Logical Forms** have the correct execution result, but are semantically wrong

What is the most populous city in United States?



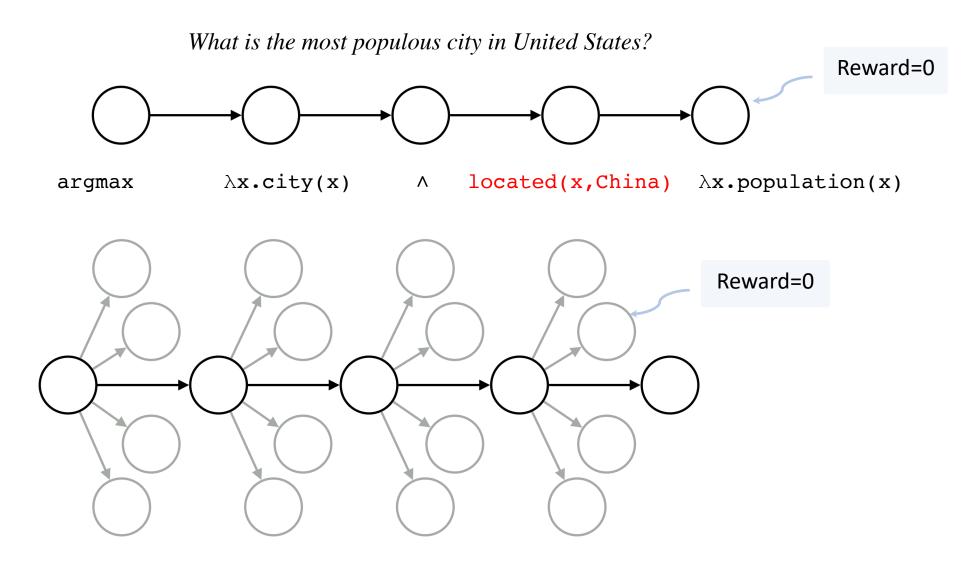
- Solutions:
 - Encourage diversity in gradient updates by updating different hypotheses with roughly equal gradient weights (Guu *et al.*, 2017)
 - Use prior lexical knowledge to promote promising hypotheses. E.g., *populous* has strong association with λx .population(x) (Misra *et al.*, 2018)

Weakly-supervised Learning Issue 2: Search Space

- The space of possible logical forms with correct answers is exponentially large
- How to search candidate logical forms more efficiently?

$$\nabla \log p_{\theta}(\boldsymbol{y}^{*}|\boldsymbol{x}) = \sum_{\substack{\boldsymbol{z}: \text{answer}(\boldsymbol{z}) = \boldsymbol{y}^{*} \\ \text{Prohibitively Large} \\ \text{Search Space}} w(\boldsymbol{z}, \boldsymbol{x}) \cdot \nabla \log p_{\theta}(\boldsymbol{z}|\boldsymbol{x})$$

Efficient Search: Single Step Reward Observation



Factorize the reward into each single time step (a.k.a., reward shaping) [Suhr and Artzi, 2018]