
CS11-747 Neural Networks for NLP
Generate Trees Incrementally

Graham Neubig
gneubig@cs.cmu.edu

Language Technologies Institute
Carnegie Mellon University



The Two Two Most Common of Linguistic Tree Structures

• Dependency Trees focus on relations between words

• Phrase Structure models the structure of a sentence

I saw a girl with a telescope

PRP VBD DT NN IN DT NN

NP NP
PP

VPS

I saw a girl with a telescope

ROOT



Structured Meaning Representations

Semantic Parsing: Another Representative Text-to-Structure Task

Abstract Syntax Trees

Transform Natural Language Intents 
to Executable Programs

Sort my_list in descending order

sorted(my_list, reverse=True)

Example: Python code generation

?



Parsing: Generate Linguistic Structures of Sentences

• Predicting linguistic structure from input sentences

• Transition-based models

– step through actions one-by-one until we have output 

– like history-based model for POS tagging

• Dynamic Programming-based models

– calculate probability of each edge/constituent, and perform some sort of 

dynamic programming

– like linear CRF model for POS



Shift-reduce 
Dependency Parsing



Why Dependencies?
• Dependencies are often good for semantic tasks, as related words are close in the 

tree
• It is also possible to create labeled dependencies, that explicitly show the 

relationship between words

det
dobj

det

I saw a girl with a telescope

prep

nsubj

pobj



Arc Standard Shift-Reduce Parsing
(Yamada & Matsumoto 2003, Nivre 2003)

• Process words one-by-one left-to-right
• Two data structures

– Queue: of unprocessed words
– Stack: of partially processed words

• At each point choose
– shift: move one word from queue to stack
– reduce left: top word on stack is head of second word
– reduce right: second word on stack is head of top word

• Learn how to choose each action with a classifier



Shift Reduce Example
Stack Buffer Stack Buffer

I saw a girlROOT

I saw a girlROOT

shift

I saw a girlROOT

shift

I saw a girlROOT

shift

I saw a girlROOT

left

I saw a girlROOT ∅

I saw a girlROOT

left

∅

I saw a girlROOT

right

∅

I saw a girlROOT

right

∅

shift



Classification for Shift-reduce
• Given a configuration

• Which action do we choose?

shift

I saw a girlROOT ∅

left

I saw a girlROOT

right

I saw a girlROOT

I saw a girlROOT

Stack Buffer



Making Classification Decisions

• Extract features from the configuration

– what words are on the stack/buffer?

– what are their POS tags?

– what are their children?

• Feature combinations are important!

– Second word on stack is verb AND first is noun: “right” action is likely

• Combination features used to be created manually (e.g. Zhang and Nivre
2011), now we can use neural nets!



Alternative Transition Methods

• All previous methods did left-to-right
• Also possible to do top-down -- pick the root first, then descend, 

e.g. Ma et al. (2018)
• Also can do easy-first -- pick the easiest link to make first, then 

proceed from there, e.g. Kiperwasser and Goldberg (2016)



A Feed-forward Neural Model 
for Shift-reduce Parsing

(Chen and Manning 2014)



A Feed-forward Neural Model for Shift-reduce Parsing
(Chen and Manning 2014)

• Extract non-combined features (embeddings)
• Let the neural net do the feature combination



What Features to Extract?
• The top 3 words on the stack and buffer (6 features)

– s1, s2, s3, b1, b2, b3
• The two leftmost/rightmost children of the top two words on the stack (8 

features)
– lc1(si), lc2(si), rc1(si), rc2(si) i=1,2

• leftmost and rightmost grandchildren (4 features)
– lc1(lc1(si)), rc1(rc1(si)) i=1,2

• POS tags of all of the above (18 features)
• Arc labels of all children/grandchildren (12 features)



Using Tree Structure in NNs: 
Syntactic Composition



Why Tree Structure?



Recursive Neural Networks
(Socher et al. 2011)

• Can also parameterize by constituent type →
– different composition behavior for NP, VP, etc.

I hate this movie

Tree-RNN

Tree-RNN

Tree-RNN



Tree-structured LSTM
(Tai et al. 2015)

• Child Sum Tree-LSTM
– Parameters shared between all children (possibly based on 

grammatical label, etc.)
– Forget gate value is different for each child → the network can 

learn to “ignore” children (e.g. give less weight to non-head 
nodes)

• N-ary Tree-LSTM
– Different parameters for each child, up to N (like the Tree RNN)



Bi-LSTM Composition
(Dyer et al. 2015)

• Simply read in the constituents with a BiLSTM
• The model can learn its own composition function!

I hate this movie

BiLSTM

BiLSTM

BiLSTM



Let’s Try it Out!
tree-lstm.py



Stack LSTM: Dependency 
Parsing w/ Less Engineering, 

Wider Context
(Dyer et al. 2015)



Encoding Parsing Configurations w/ RNNs

• We don’t want to do feature engineering (why leftmost and 
rightmost grandchildren only?!)

• Can we encode all the information about the parse configuration 
with an RNN?

• Information we have: stack, buffer, past actions



REDUCE_L REDUCE_RSHIFT

(Slide credits: Chris Dyer)

Encoding Stack Configurations w/ RNNs



Why Linguistic Structure?
• Regular linear language models do quite well
• But they may not capture phenomena that inherently require structure, such as 

long-distance agreement
• e.g. Kuncoro et al (2018) find agreement with distractors is much better with 

syntactic model
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Semantic Parsers: Natural Language Interfaces to Computers

my_list = [3, 5, 1]

sort in descending order 

sorted(my_list, reverse=True)

Virtual Assistants

Set an alarm at 7 AM

Remind me for the meeting at 5pm

Play Jay Chou’s latest album

?

?

?

Natural Language Programming

Sort my_list in descending order

Copy my_file to home folder

Dump my_dict as a csv file output.csv

?

?

?



The Semantic Parsing Task
Parsing natural language utterances into machine-executable meaning representations

Meaning RepresentationNatural Language Utterance

Show me flights from Pittsburgh 
to Seattle

lambda $0 e (and (flight $0)     
(from $0 pittsburgh:ci) 
(to $0 seattle:ci))



Semantic Parsing

lambda $0 e (and 
(flight $0)     
(from $0 Pittsburgh:ci) 
(to $0 Seattle:ci)

)

Show me flights from Pittsburgh to 
Seattle

lambda-calculus logical form

?

Meaning Representations have Strong Structures

Tree-structured Representation

[Dong and Lapata, 2016]



Machine-executable Meaning Representations

Translating a user’s natural language utterances (e.g., queries) into machine-
executable formal meaning representations (e.g., logical form, SQL, Python code)

Domain-Specific, Task-Oriented 
Languages (DSLs)

lambda $0 e (and (flight $0)     
(from $0 Pittsburgh:ci) 
(to $0 Seattle:ci))

Show me flights from Pittsburgh to 
Seattle

lambda-calculus logical form

?

General-Purpose 
Programming Languages

Sort my_list in descending order

sorted(my_list, reverse=True)

Python code generation

?



Clarification about Meaning Representations (MRs)
Machine-executable MRs (our focus today) executable programs to accomplish a task
MRs for Semantic Annotation capture the semantics of natural language sentences

Machine-executable
Meaning Representations

lambda $0 e (and (flight $0)     
(from $0 pittsburgh:ci) 
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Lambda Calculus Logical Form

Meaning Representations
For Semantic Annotation

The boy wants to go

(want-01
:arg0 (b / boy)
:arg1 (g / go-01))

Abstract Meaning Representation (AMR)

Lambda Calculus

Python, SQL, …
Abstract Meaning Representation (AMR), 

Combinatory Categorical Grammar (CCG)



Workflow of a Semantic Parser

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 pittsburgh:ci) 
(to $0 seattle:ci))

Execute Programs against KBs Execution Results (Answer)
1. Alaska Air 119
2. American 3544 -> Alaska 1101
3. …



Semantic Parsing Datasets

Django

HearthStone

CONCODE

CoNaLa

JuICe

Domain-Specific, Task-Oriented 
Languages (DSLs)

lambda $0 e (and (flight $0)     
(from $0 Pittsburgh:ci) 
(to $0 Seattle:ci))

Show me flights from Pittsburgh to 
Seattle

lambda-calculus logical form

?

General-Purpose 
Programming Languages

Sort my_list in descending order

sorted(my_list, reverse=True)

Python code generation

?

GeoQuery / ATIS / JOBs

WikiSQL / Spider

IFTTT



GEO Query, ATIS, JOBS
• GEO Query 880 queries about US geographical information
• ATIS 5410 queries about flight booking and airport transportation
• Jobs 640 queries to a job database

GEO Query

argmax $0 
(state:t $0) 
(count $1 (and 

(river:t $1)     
(loc:t $1 $0)))

which state has the most rivers 
running through it?

Lambda Calculus Logical Form

JOBS

answer(
company(J,’microsoft’),
job(J),
not((req deg(J,’bscs’))))

what Microsoft jobs do not 
require a bscs?

Prolog-style Program

ATIS

Lambda Calculus Logical Form

Show me flights from Pittsburgh 
to Seattle

lambda $0 e 
(and (flight $0)     
(from $0 pittsburgh:ci) 
(to $0 seattle:ci))



Natural Language Questions with
Database Schema

Text-to-SQL Tasks

Input Utterance

Show me flights from Pittsburgh to Seattle

SQL Query

SELECT Flight.FlightNo
FROM Flight
JOIN Airport as DepAirport
ON 

Flight.Departure == DepAirport.Name
JOIN Airport as ArvAirport
ON 

Flight.Arrival == ArvAirport.Name
WHERE

DepAirport.CityName == Pittsburgh
AND
ArvAirport.CityName == Seattle



Spider
− Examples from 200 databases
− Target SQL queries involve joining

fields over multiple tables
− Non-trivial Compositionality

– Nested queries
– Set Union
– …

https://yale-lily.github.io

[Yu et al., 2018]



Semantic Parsing Datasets

Django

HearthStone

CONCODE

CoNaLa

Domain-Specific, Task-Oriented 
Languages (DSLs)

lambda $0 e (and (flight $0)     
(from $0 Pittsburgh:ci) 
(to $0 Berkeley:ci))

Show me flights from Pittsburgh to 
Berkeley

lambda-calculus logical form

?

General-Purpose 
Programming Languages

Sort my_list in descending order

sorted(my_list, reverse=True)

Python code generation

?

GeoQuery / ATIS / JOBs

WikiSQL / Spider

IFTTT



The CONALA Code Generation Dataset

− 2,379 training and 500 test examples

− Natural Language queries collected from

StackOverflow

− Manually annotated, high quality natural 

language queries

− Code is highly expressive and compositional

conala-corpus.github.io [Yin et al., 2018]

Get a list of words `words` of a file 'myfile'

words = open('myfile').read().split()

Copy the content of file 'file.txt' to file 'file2.txt'

shutil.copy('file.txt’, 'file2.txt')

Check if all elements in list `mylist` are the same

len(set(mylist)) == 1

Create a key `key` if it does not exist in dict `dic` 
and append element `value` to value 

dic.setdefault(key, []).append(value)



Supervised Learning of Semantic Parsers

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 pittsburgh:ci) 
(to $0 seattle:ci))

Train a neural semantic parser with source natural language utterances and target programs



Semantic Parsing as Sequence-to-Sequence Transduction

• Treat the target meaning representation as a sequence of surface tokens
• Reduce the (structured prediction) task as another sequence-to-sequence 

learning problem

flight from Pittsburgh to Seattle

. . . . .

$0 elambda ( and )

[Dong and Lapata, 2016; Jia and Liang, 2016]

Task-Specific
Meaning Representations

lambda $0 e (and (flight $0)     
(from $0 pittsburgh:ci) 
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Lambda Calculus Logical Form



Issues with Predicting Linearized Programs
• Meaning Representations (e.g., a database query) have strong underlying 

structures!
• Issue Using vanilla seq2seq models ignore the rich structures of meaning 

representations, and could generate invalid outputs that are not trees

Task-Specific
Meaning Representations

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Show me flights from Pittsburgh to Seattle

Task specific logical form

Tree-structured Representation

[Jia and Liang, 2016; Dong and Lapata, 2016]



Core Research Question for Better Models
How to add inductive biases to networks a to better capture the structure of programs?

Predict Programs Following 
Task-Specific Program Structures

Encode Utterance and In-Domain 
Knowledge Schema

Input Utterance

Show me flights from Pittsburgh to Berkeley

[Xu et al., 2017; Yu et al., 2018]



Structure-aware Decoding for Semantic Parsing
• Seq2Tree Generate the parse tree of a program using a hierarchy of recurrent neural

decoders following the tree structure
• Sequence-to-tree Decoding Process

– Each level of a parse tree is a 
sequence of terminals and non-
terminals

– Use a LSTM decoder to generate the 
sequence in that level

– For each non-terminal node, expand 
it using the LSTM decoder

lambda

$0 e and

> from

$01600:ti dallas:cideparture_time

$0

Show me flight from Dallas departing after 16:00

[Dong and Lapata, 2016]



Structure-aware Decoding (Cont’d)
• Coarse-to-Fine Decoding decode a coarse sketch of the target logical form first and then 

decode the full logical form conditioned on both the input query and the sketch
• Explicitly model a coarse global structure of the logical form, and use it to guide the 

generation of the fine-grained structure

[Dong and Lapata, 2018]



Grammar/Syntax-driven Semantic Parsing
• Previously introduced methods could generate tree-structured representations 

but cannot guarantee they are gramatically correct.
• Meaning (e.g., Python) have strong underlying grammar/syntax
• How can we explicitly leverage the grammar of programs for better generation?

Abstract Syntax TreePython Abstract Grammar

sorted(my_list, reverse=True)

Call ⟼ expr[func] expr*[args] keyword*[keywords]

If ⟼ expr[test] stmt*[body] stmt*[orelse]

For ⟼ expr[target] expr*[iter] stmt*[body] 
stmt*[orelse]

FunctionDef ⟼ identifier[name] expr*[iter] 
stmt*[body]  stmt*[orelse]

expr ⟼ Name | Call Expr

Call

expr[func] expr*[args] keyword*[keywords]

Name

Name

erpr

str(my_list)

keyword

str(sorted)

....

[Yin and Neubig, 2017; Rabinovich et al., 2017]



Grammar/Syntax-driven Semantic Parsing
• Key Idea use the grammar of the target meaning representation (Python AST) as 

prior symbolic knowledge in a neural sequence-to-sequence model

Input Intent sort my_list in descending order

Generated AST

sorted(my_list, reverse=True)Surface Code 

(𝒚)

(𝒄)

𝑝 𝑦 𝑥 : a seq2seq model with
prior syntactic information

Deterministic transformation
(using Python astor library)

(𝒙)

Expr

Call

expr[func] expr*[args] keyword*[keywords]

Name

Name

erpr

str(my_list)

keyword

str(sorted)
....

[Yin and Neubig, 2017; Rabinovich et al., 2017]



Grammar/Syntax-driven Semantic Parsing
• Factorize the generation story of an AST into sequential application of actions {𝑎$}:

– ApplyRule[r]: apply a production rule 𝑟 to the frontier node in the derivation
– GenToken[v]: append a token 𝑣 (e.g., variable names, string literals) to a terminal

root 𝑎! root ⟼ Expr

Expr

expr[Value]

Call

expr[func] expr*[args] keyword*[keywords]

Name

str Name

erpr

str(my_list)

keyword

𝑎" Expr ⟼ expr[Value]

𝑎# expr ⟼ Call

𝑎$ Call ⟼ expr[func] expr*[args] 
keyword*[keywords]

𝑎%

𝑎&

𝑎'

𝑎(

expr ⟼ Name

Name ⟼ str

GenToken[sorted]

GenToken[</n>]

𝑎)

𝑎!*

𝑎!!

𝑎!"

𝑎!#

expr* ⟼ expr

expr ⟼ Name

Name ⟼ str

GenToken[my_list]

GenToken[</n>]

𝑎!$ keyword* ⟼ keyword

....

Derivation AST Action Sequence

𝑡+

𝑡+

ApplyRule

GenToken

Generated by a
recurrent neural
decoder

str(sorted)

....

sorted(my_list, reverse=True)



TranX: Transition-based Abstract SyntaX Parser
• Convenient interface to specify task-dependent grammar in plain text
• Customizable conversion from abstract syntax trees to domain-specific programs
• Built-in support for many languages: Python, SQL, Lambda Calculus, Prolog…

Sort my_list in descending order

stmt   FunctionDef(identifiler name,

expr   Call(expr func, expr* args,

Grammar Specification

 arguments args, stmt* body)
 Expr(expr value)

keyword* keywords)

Str(string id)

|

Name(identifier id)|
|

Input Utterance

ApplyConstr(Expr)

ApplyConstr(Call)

ApplyConstr(Name)

Transition System

. . .

GenToken(sorted)

Expr

Call

Name

sorted

Name

my_list

Keyword

Abstract Syntax Tree

. . .

[Yin and Neubig 2018, Yin and Neubig 2019]

github.com/pcyin/tranX



Side Note: Importance of Modeling Copying
• Modeling copying is very important for neural 

semantic parsers!
• Out-of-vocabulary entities (e.g., city names, date 

time) often appear in the input utterance
• Neural seq2seq models like to hallucinate entities 

not in the input utterance J



Summary: Supervised Learning of Semantic Parsers
Key Research Question design decoders to capture the structure of programs

lambda

$0 e and

> from

$01600:ti dallas:cideparture_time

$0

Show me flight from Dallas departing after 16:00

Structure-aware Decoding

Sort my_list in descending order

stmt   FunctionDef(identifiler name,

expr   Call(expr func, expr* args,

Grammar Specification

 arguments args, stmt* body)
 Expr(expr value)

keyword* keywords)

Str(string id)

|

Name(identifier id)|
|

Input Utterance

ApplyConstr(Expr)

ApplyConstr(Call)

ApplyConstr(Name)

Transition System

. . .

GenToken(sorted)

Expr

Call

Name

sorted

Name

my_list

Keyword

Abstract Syntax Tree

. . .

Grammar-constrained Decoding



Data Collection is CostlySupervised Parsers are Data Hungry

Supervised Learning: the Data Inefficiency Issue

Purely supervised neural semantic 
parsing models require large 
amounts of training data

Copy the content of file 'file.txt' to file 'file2.txt'
shutil.copy('file.txt','file2.txt')

Get a list of words `words` of a file 'myfile'
words = open('myfile').read().split()

Check if all elements in list `mylist` are the same
len(set(mylist)) == 1

Collecting parallel training 
data costs           and 

*Examples from conala-corpus.github.io [Yin et al., 2018]
1700 USD for <3K Python code generation examples



Weakly-supervised Learning of Semantic Parsers

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 pittsburgh:ci) 
(to $0 seattle:ci))

Query Execution Execution Results (Answer)
1. AS 119
2. AA 3544 -> AS 1101
3. …

Train a semantic parser using natural language query and the execution results
(a.k.a. Semantic Parsing with Execution)

Weak supervision signal

As unobserved 
latent variable

[Clarke et al., 2010; Liang et al., 2011] 



Hypothesized Programs

Weakly-supervised Parsing as Reinforcement Learning

City.Filter(Country==‘USA’)
.OrderBy(Population)
.First() => Result: New York

Weakly Supervised Semantic Parsing

What is the most populous city in 
United States?

Answer: New York

City Country Population GDP

New York USA 8.62M 1275B

Hong Kong China 7.39M 341.4B

Tokyo Japan 9.27M 1800B

London UK 8.78M 650B

Los Angeles USA 4.00M 941B

City.OrderBy(Population)
.First() => Result: Tokyo

City.Filter(Country==‘USA’)
.OrderBy(GDP)
.First() => Result: New York



Weakly-supervised Learning -- Challenges

Large Search Space

Exponentially large search space w.r.t. the size 
of programs

Very Sparse Rewards

Only very few programs are actually correct

Spurious Programs

Spurious programs could also hit the correct 
answer, leading to noisy reward signals.

Hypothesized Programs

City.Filter(Country==‘USA’)
.OrderBy(Population)
.First() => Result: New York

City.OrderBy(Population)
.First() => Result: Tokyo

City.Filter(Country==‘USA’)
.OrderBy(GDP)
.First() => Result: New York



Efficient Search: Cache High-reward Programs

• Use a memory buffer to cache high-rewarding logical forms sampled so far
• During training, bias towards high-rewarding queries in the memory buffer

[Liang et al., 2018] 



Tackle Spurious Programs using Heuristics

City.Filter(Country==‘USA’)
.OrderBy(Population)
.First() => Result: New York

City.Filter(Country==‘USA’)
.OrderBy(GDP)
.First() => Result: New York

What is the most populous city in United States?
?

Similarity(‘populous’, population) Similarity(‘populous’, GDP) 

[Guu et al., 2017; Misra et al., 2018; Cheng et al., 2018]

p( | )

<latexit sha1_base64="vQiiGKrjztkC8Gvloy1kU6BKYAU=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWRii6LblxWsA9oQ5lMpu3QySTOTAol9k/cuFDErX/izr9xmmahrQcu93DOvcyd48ecKe0431ZhbX1jc6u4XdrZ3ds/sA+PWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2x7dzvz2hUrFIPOhpTL0QDwUbMIK1kfq2HVd6jwkO0BPK+nnfLjtVJwNaJW5OypCj0be/ekFEkpAKTThWqus6sfZSLDUjnM5KvUTRGJMxHtKuoQKHVHlpdvkMnRklQINImhIaZervjRSHSk1D30yGWI/UsjcX//O6iR5ceykTcaKpIIuHBglHOkLzGFDAJCWaTw3BRDJzKyIjLDHRJqySCcFd/vIqaV1U3Vr18r5Wrt/kcRThBE6hAi5cQR3uoAFNIDCBZ3iFNyu1Xqx362MxWrDynWP4A+vzB2aKkt4=</latexit>

?Back-translation-score p( | )

<latexit sha1_base64="vQiiGKrjztkC8Gvloy1kU6BKYAU=">AAAB+XicbVDLSsNAFL2pr1pfUZduBotQNyWRii6LblxWsA9oQ5lMpu3QySTOTAol9k/cuFDErX/izr9xmmahrQcu93DOvcyd48ecKe0431ZhbX1jc6u4XdrZ3ds/sA+PWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2x7dzvz2hUrFIPOhpTL0QDwUbMIK1kfq2HVd6jwkO0BPK+nnfLjtVJwNaJW5OypCj0be/ekFEkpAKTThWqus6sfZSLDUjnM5KvUTRGJMxHtKuoQKHVHlpdvkMnRklQINImhIaZervjRSHSk1D30yGWI/UsjcX//O6iR5ceykTcaKpIIuHBglHOkLzGFDAJCWaTw3BRDJzKyIjLDHRJqySCcFd/vIqaV1U3Vr18r5Wrt/kcRThBE6hAi5cQR3uoAFNIDCBZ3iFNyu1Xqx362MxWrDynWP4A+vzB2aKkt4=</latexit>

?Back-translation-score



Conclusion: Workflow of a Semantic Parser

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Query Execution Execution Results (Answer)
1. AS 119
2. AA 3544 -> AS 1101
3. …



Conclusion: Two Learning Paradigms

Weakly Supervised Semantic Parsing

What is the most populous city in 
United States?

Answer: New York

City Country Population GDP

New York USA 8.62M 1275B

Hong Kong China 7.39M 341.4B

Tokyo Japan 9.27M 1800B

Supervised Semantic Parsing

What is the most populous city in 
United States?

City.Filter(Country==‘USA’)
.OrderBy(Population)
.First() => Result: New York

Tree-based Decoding

Grammar-constrained Decoding

Efficient Exploration over Large Search Space

Tackle Spurious Programs



Challenge: Natural Language is Highly Compositional 

• Sometimes even a short NL phrase/clause has complex structured grounding

James K. Polk

government_position

government_position

President

1845

1849

Governor

1839

1841

titl
e
from

to

titl
e

from
to

SELECT ?job_title.
FROM Freebase
WHERE{

James K. Polk  government_position ?job.
?job           title          ?job_title.

?job           to               ?to_date.

FILTER(?to_date < (
SELECT ?start_date.
WHERE{

James K. Polk government_position ?job1.
?job1         title           President.
?job1         from          ?start_date.

}
))

}

𝑄: what was James K. Polk before he was president?

Meaning Representation in SPARQL Query

[Yin et al., 2015]



Challenge: Scale to Open-domain Knowledge
• Most existing works focus on parsing natural language to queries to structured, 

curated knowledge bases
• Most of the world’s knowledge has unstructured, textual form!

– Machine Reading Comprehension tasks (e.g., SQUAD) use textual knowledge

User’s Natural Language Query

Show me flights from Pittsburgh to Seattle

Parsing to Meaning Representation

lambda $0 e (and (flight $0)     
(from $0 san_Francisco:ci) 
(to $0 seattle:ci))

Query Execution Execution Results (Answer)
1. AS 119
2. AA 3544 -> AS 1101
3. …

Textual Knowledge (e.g., 
Wikipedia Articles)

How to design MRs that 
can be used to query 
textual knowledge?



Final Notes: Challenges

Breadth of Domains and
Knowledge Source

Depth of Semantic Compositionality

Task-specific Systems
and Datasets (ATIS)

Semantic Parsing for Large Scale KB

Textual Reading Comprehension (SQuAD)

Web Search

???

(Figure adapted from Pasupat and Liang, 2015)



Supplementary Slides



More Semantic Parsing Datasets



WikiSQL Dataset

• 80,654 examples of Table, Question, SQL Query and Answer
• Context a small, single database table extracted from a Wikipedia article
• Target an SQL query

[Zhong et al., 2017]



HearthStone (HS) Card Dataset
• Description: properties/fields of an HearthStone card
• Target code: implementation as a Python class from HearthBreaker

<name> Divine Favor </name> 
<cost> 3 </cost> 
<desc> Draw cards until you have as many in hand as your opponent </desc>

[Ling et al., 2016]

Utterance (Card Property)

Target Code (Python class)



IFTTT Dataset
• Over 70K user-generated task completion snippets crawled from ifttt.com
• Wide variety of topics: home automation, productivity, etc.
• Domain-Specific Language: IF-THIS-THEN-THAT structure

https://ifttt.com/applets/1p-autosave-
your-instagram-photos-to-dropbox

[Quirk et al., 2015]

IFTTT Natural Language Query
and Meaning Representation

IF Instagram.AnyNewPhotoByYou
THEN Dropbox.AddFileFromURL

Autosave your Instagram photos to 
Dropbox

Domain-Specific Programming Language

https://ifttt.com/applets/1p-autosave-your-instagram-photos-to-dropbox


Django Annotation Dataset 
• Description: manually annotated descriptions for 10K lines of code
• Target code: one liners
• Covers basic usage of Python like variable definition, function calling, string 

manipulation and exception handling

call the function _generator, join the result into a string, 
return the result

Utterance

Target

[Oda et al., 2015]



Notes for Weakly Supervised Parsing



Weakly-supervised Parsing as Reinforcement Learning
What is the most populous city in United States?NL question

argmax(λx.city(x)∧located(x,US), λx.population(x))Sampled Logical From
(Lambda DCS, Liang 2011)

Semantic Parsing

𝑧!
argmax(λx.city(x), λx.population(x))𝑧"
argmax(λx.city(x)∧loc(x,US), λx.GDP(x))

…

𝑧#

New YorkAnswer
(with rewards)

Query Execution

Tokyo

New York

𝑦!
𝑦"
𝑦#

Gradient Updates

Optimize Objective

Probability of
Gold Answer

p(y⇤ = New York) = p(z1|x) + p(z3|x)



Maximum Marginal Likelihood Training Objective

w(z,x) =
p✓(z|x)P

z0:answer(z0=y⇤) p✓(z
0|x)where

• Intuitively, the gradient from each candidate logical form is weighted by its normalized 
probability. The more likely the logical form is, the higher the weight of its gradient

What is the most populous city in United States?

argmax(λx.city(x)∧located(x,US), λx.population(x))

Semantic Parsing

argmax(λx.city(x)∧loc(x,US), λx.GDP(x))

𝑧!
𝑧#

Reward

Gold Answer Candidate Logical Form
(Latent Variable)

r log p✓(y
⇤|x) =

X

z:answer(z)=y⇤

w(z,x) ·r log p✓(z|x)

Marginalization over all
(sampled) hypotheses



Weakly-supervised Learning Issue 1: Spurious Logical Forms
• Spurious Logical Forms have the correct execution result, but are semantically 

wrong

What is the most populous city in United States?

argmax(λx.city(x)∧located(x,US), λx.population(x))Correct

Semantic Parsing

argmax(λx.city(x)∧loc(x,US), λx.GDP(x))

𝑧!
𝑧#Spurious

• Solutions: 
– Encourage diversity in gradient updates by updating different hypotheses with roughly 

equal gradient weights (Guu et al., 2017)
– Use prior lexical knowledge to promote promising hypotheses. E.g., populous has strong 

association with λx.population(x) (Misra et al., 2018)

Reward



Weakly-supervised Learning Issue 2: Search Space
• The space of possible logical forms with correct answers is exponentially large
• How to search candidate logical forms more efficiently?

Prohibitively Large 
Search Space

r log p✓(y
⇤|x) =

X

z:answer(z)=y⇤

w(z,x) ·r log p✓(z|x)



Efficient Search: Single Step Reward Observation

Factorize the reward into each single time step (a.k.a., reward shaping)

argmax       λx.city(x)     ∧   located(x,China) λx.population(x)

Reward=0

Reward=0

What is the most populous city in United States?

[Suhr and Artzi, 2018] 


