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Types of Prediction

* Two classes (binary classification)

| hate this movie

—» Negative

 Multiple classes (multi-class classification)

good

| hate this movie neutral
\ bad
very bad

* Exponential/infinite labels (structured prediction)
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Many Varieties of Structured Prediction!

- Models:

 RNN-based decoders

« Convolution/self attentional decoders
 CRFs w/ local factors

- Training algorithms:

* Maximum likelihood w/ teacher forcing

e« Sequence level likelihood

& Structured perceptron, structured large margin

Covered
today

* Reinforcement learning/minimum risk training
o Sampling corruptions of data



Reminder: Globally
Normalized Moaels

* Locally normalized models: each decision made
by the model has a probabillity that adds to one
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* Globally normalized models (a.k.a. energy-
based models): each sentence has a score, which
IS not normalized over a particular decision
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Ditficulties Training Globally
Normalized Models

* Partition function problematic
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* Two options for calculating partition function

e Structure model to allow enumeration via dynamic
programming, e.g. linear chain CRF, CFG

e Estimate partition function through sub-sampling
hypothesis space



Two Methods tor
Approximation

- Sampling:
e Sample k samples according to the probability distribution

* + Unbiased estimator: as k gets large will approach true
distribution

* - High variance: what if we get low-probability samples?

- Beam search:

o Search for k best hypotheses

* - Biased estimator: may result in systematic differences from
true distribution

e + [Lower variance: more likely to get high-probability outputs



Un-normalized Models:
Structured Perceptron



Normalization often Not
Necessary for Inference!

* At inference time, we often just want the best
hypothesis

Y = argmax P(Y | X)
Y
e |fthat's all we need, no need for normalization!
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The Structured
Perceptron Algorithm

* An extremely simple way of training (non-probabilistic) global models

e Find the one-best, and if it's score is better than the correct answer,
adjust parameters to fix this

A
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Structured Perceptron Loss

e Structured perceptron can also be expressed as a
loss function!

Cpercept (X,Y) = max(0, S(Y | X;60) — S(Y | X;6))
* Resulting gradient looks like perceptron algorithm
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e This is a normal loss function, can be used in NNs

* But! Requires finding the argmax in addition to the true
candidate: must do prediction during training



Contrasting Perceptron anad
Global Normalization

* Globally normalized probabilistic model

byt (X, V:0) = —log &
global< ) Lo )__ 08 ZY/ BS(Y/|X)

e Structured perceptron
gpercept (Xv Y) — maX(07 S(ff ‘ X; 9) o S(Y ‘ X; 9))
* Global structured perceptron?

gglobal percept X Y Zmax Y | X 6)) (Y | X; 8))

e Same computational problems as globally normalized
probabilistic models



Structured Training
and Pre-training

* Neural network models have lots of parameters and a
big output space; training is hard

* Tradeoffs between training algorithms:
* Selecting just one negative example is inefficient

e Jeacher forcing efficiently updates all parameters,
but suffers from exposure bias

* Thus, it is common to pre-train with teacher forcing,
then fine-tune with more complicated algorithm



HiINnge Loss ana
Cost-sensitive Training



Perceptron and Uncertainty

 Which is better, dotted or dashed?
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* Both have zero perceptron loss!



Adding a "Margin”
with Hinge Loss

 Penalize when incorrect answer is within margin m
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Perceptron Hinge

Cninge (@, 33 0) = max(0,m + S(j | 236) — S(y | ;6))



Hinge Loss for Any
Classifier!

* We can swap cross-entropy for hinge loss anytime

hate thls mowe <s>
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DyNet loss = dy.hinge(score, answer, m=1)



Cost-augmented Hinge

e Sometimes some decisions are worse than others

* e.g. VB -> VBP mistake not so bad, VB -> NN
mistake much worse for downstream apps

* Cost-augmented hinge defines a cost for each
iIncorrect decision, and sets margin equal to this

Ceahinge (. v 0) = max(0, cost (g, y) + S(7 | 230) — S(y | :6))



Costs over Seguences

- Zero-one loss: 1 if sentences differ, zero otherwise

cOStrero-one(Y,Y) = 6(Y £ Y)

- Hamming loss: 1 for every different element

(lengths are identical)
Y|
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e Other losses: edit dlstance, 1-BLEU, etc.



Structured Hinge Loss

* Hinge loss over sequence with the largest margin
violation

A

Y = argmaX?#Ycost(?, Y)+ S(Y | X:6)
leaninge(X, Y 0) = max(0,cost(Y,Y) + S(Y | X;:0) — S(Y | X;6))
* Problem: How do we find the argmax above?

* Solution: In some cases, where the loss can be
calculated easily, we can consider loss in search.



Cost-Augmented Decoding
for Hamming Loss

« Hamming loss is decomposable over each word

e Solution: add a score = cost to each incorrect choice during search
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Simpler Remedies to
EXposure Blas



What's Wrong w/
Structured Hinge Loss”

* [t may work, but...
* Considers fewer hypotheses, so unstable
* Requires decoding, so slow

* (GGenerally must resort to pre-training (and even
then, it's not as stable as teacher forcing w/ MLE)



Solution 1: Sample Mistakes in Training
(Ross et al. 2010)

 DAgQger, also known as “scheduled sampling”, etc., randomly
samples wrong decisions and feeds them in
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o Start with no mistakes, and then gradually introduce them using
annealing

SCore

 How to choose the next tag”? Use the gold standard, or create a
“‘dynamic oracle” (e.g. Goldberg and Nivre 2013)



Solution 2:
Drop Out Inputs

 Basic idea: Simply don't input the previous decision
sometimes during training (Gal and Ghahramani 2015)
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* Helps ensure that the model doesn't rely too heavily on
predictions, while still using them



Solution 3:;
Corrupt Training Data

Reward augmented maximum likelihood (Nourozi et al. 2016)

Basic idea: randomly sample incorrect training data, train w/
maximum likelihood

| hate this movie
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o Sampling probability proportional to goodness of output

e Can be shown to approximately minimize risk (next class)



Questions?



