CS11-747 Neural Networks for NLP
Structured Perceptron/

Margin Methods

Graham Neubig
P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2020/

https://phontron.com/class/nn4nlp2020/

Types of Prediction

* Two classes (binary classification)

| hate this movie

—» Negative

 Multiple classes (multi-class classification)

good

| hate this movie neutral
\ bad
very bad

* Exponential/infinite labels (structured prediction)
| hate this movie > PRP VBP DT NN

| hate this movie > KOno elga ga Kiral

Many Varieties of Structured Prediction!

- Models:

 RNN-based decoders

« Convolution/self attentional decoders
 CRFs w/ local factors

- Training algorithms:

* Maximum likelihood w/ teacher forcing

e« Sequence level likelihood

& Structured perceptron, structured large margin

Covered
today

* Reinforcement learning/minimum risk training
o Sampling corruptions of data

Reminder: Globally
Normalized Moaels

* Locally normalized models: each decision made
by the model has a probabillity that adds to one

Y| S(yj|X (T Yi—1)
P(Y | X) H 53 S(0; 101505 1)

* Globally normalized models (a.k.a. energy-
based models): each sentence has a score, which
IS not normalized over a particular decision

(RS Ve

oS(X,Y)

ZY/EV* GS(XAN/)

P(Y | X) =

Globally Normalized
| ikelihood

Ditficulties Training Globally
Normalized Models

* Partition function problematic

S(X Y)
P(Y | X) = e
| ZYEV* €S(X Y) ‘

* Two options for calculating partition function

e Structure model to allow enumeration via dynamic
programming, e.g. linear chain CRF, CFG

e Estimate partition function through sub-sampling
hypothesis space

Two Methods tor
Approximation

- Sampling:
e Sample k samples according to the probability distribution

* + Unbiased estimator: as k gets large will approach true
distribution

* - High variance: what if we get low-probability samples?

- Beam search:

o Search for k best hypotheses

* - Biased estimator: may result in systematic differences from
true distribution

e + [Lower variance: more likely to get high-probability outputs

Un-normalized Models:
Structured Perceptron

Normalization often Not
Necessary for Inference!

* At inference time, we often just want the best
hypothesis

Y = argmax P(Y | X)
Y
e |fthat's all we need, no need for normalization!

oS(X,Y) .

T Y = argmax S(X,Y)
ZY/EV* € ’ Y

PY | X) =

The Structured
Perceptron Algorithm

* An extremely simple way of training (non-probabilistic) global models

e Find the one-best, and if it's score is better than the correct answer,
adjust parameters to fix this

A

Y — argmaX};#YS(f/ | X;0) <«——Find one best

if S(V | X:0)>S(Y | X;0) then < scorebetter
than reference

0S5 (Y|X;0) aS(mX;@))

0 < 0+ o 56 56

end if

Structured Perceptron Loss

e Structured perceptron can also be expressed as a
loss function!

Cpercept (X,Y) = max(0, S(Y | X;60) — S(Y | X;6))
* Resulting gradient looks like perceptron algorithm

Olpercepr (X, Y30) _ [OSCH0 _ OSUIXO i §(V | X;6) > S(Y | X:0)

00 0 otherwise

\

e This is a normal loss function, can be used in NNs

* But! Requires finding the argmax in addition to the true
candidate: must do prediction during training

Contrasting Perceptron anad
Global Normalization

* Globally normalized probabilistic model

byt (X, V:0) = —log &
global<) Lo)__ 08 ZY/ BS(Y/|X)

e Structured perceptron
gpercept (Xv Y) — maX(07 S(ff ‘ X; 9) o S(Y ‘ X; 9))
* Global structured perceptron?

gglobal percept X Y Zmax Y | X 6)) (Y | X; 8))

e Same computational problems as globally normalized
probabilistic models

Structured Training
and Pre-training

* Neural network models have lots of parameters and a
big output space; training is hard

* Tradeoffs between training algorithms:
* Selecting just one negative example is inefficient

e Jeacher forcing efficiently updates all parameters,
but suffers from exposure bias

* Thus, it is common to pre-train with teacher forcing,
then fine-tune with more complicated algorithm

HiINnge Loss ana
Cost-sensitive Training

Perceptron and Uncertainty

 Which is better, dotted or dashed?

™~
N
X \ "-,‘". O
S
X ©. 0
X \
.

* Both have zero perceptron loss!

Adding a "Margin”
with Hinge Loss

 Penalize when incorrect answer is within margin m

4

\n;
N w

0
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Perceptron Hinge

Cninge (@, 33 0) = max(0,m + S(j | 236) — S(y | ;6))

Hinge Loss for Any
Classifier!

* We can swap cross-entropy for hinge loss anytime

hate thls mowe <s>
- \
hmge hlnge hinge hinge
! !
PRP VBP DT NN
€.J. loss = dy.pickneglogsoftmax (score, answer)
IN !

DyNet loss = dy.hinge(score, answer, m=1)

Cost-augmented Hinge

e Sometimes some decisions are worse than others

* e.g. VB -> VBP mistake not so bad, VB -> NN
mistake much worse for downstream apps

* Cost-augmented hinge defines a cost for each
iIncorrect decision, and sets margin equal to this

Ceahinge (. v 0) = max(0, cost (g, y) + S(7 | 230) — S(y | :6))

Costs over Seguences

- Zero-one loss: 1 if sentences differ, zero otherwise

cOStrero-one(Y,Y) = 6(Y £ Y)

- Hamming loss: 1 for every different element

(lengths are identical)
Y|

COSthammlng Z 5 yj # y]

e Other losses: edit dlstance, 1-BLEU, etc.

Structured Hinge Loss

* Hinge loss over sequence with the largest margin
violation

A

Y = argmaX?#Ycost(?, Y)+ S(Y | X:6)
leaninge(X, Y 0) = max(0,cost(Y,Y) + S(Y | X;:0) — S(Y | X;6))
* Problem: How do we find the argmax above?

* Solution: In some cases, where the loss can be
calculated easily, we can consider loss in search.

Cost-Augmented Decoding
for Hamming Loss

« Hamming loss is decomposable over each word

e Solution: add a score = cost to each incorrect choice during search
<S> hate thls mowe <s>

/ /\ A
-

aee®

NN [05 k1
VBP |[-0.2 k1
PRP | 1.3

DT |-2.0}1
'
NN

Simpler Remedies to
EXposure Blas

What's Wrong w/
Structured Hinge Loss”

* [t may work, but...
* Considers fewer hypotheses, so unstable
* Requires decoding, so slow

* (GGenerally must resort to pre-training (and even
then, it's not as stable as teacher forcing w/ MLE)

Solution 1: Sample Mistakes in Training
(Ross et al. 2010)

 DAgQger, also known as “scheduled sampling”, etc., randomly
samples wrong decisions and feeds them in

hate this movie <S>

288

score
P
loss samp

score score
P | P P
loss samp | loss samp } loss samp

N A N A I A |
PRP NN VBP VB DI DT NN NN

o Start with no mistakes, and then gradually introduce them using
annealing

SCore

 How to choose the next tag”? Use the gold standard, or create a
“‘dynamic oracle” (e.g. Goldberg and Nivre 2013)

Solution 2:
Drop Out Inputs

 Basic idea: Simply don't input the previous decision
sometimes during training (Gal and Ghahramani 2015)

hate this movie <S>

AN AUY, Al
BhE,———Bdan @L
Y vas o

<S>

/\

288

classifier classifier classifier classifier
! ! Y, ' '
PRP VBP DT NN

* Helps ensure that the model doesn't rely too heavily on
predictions, while still using them

Solution 3:;
Corrupt Training Data

Reward augmented maximum likelihood (Nourozi et al. 2016)

Basic idea: randomly sample incorrect training data, train w/
maximum likelihood

| hate this movie
$ MLE
PRP NN DT NN
$ sample
PRP VBP DT NN

o Sampling probability proportional to goodness of output

e Can be shown to approximately minimize risk (next class)

Questions?

