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Knowledge Bases

Structured databases of knowledge usually containing
e Entities (nodes in a graph)
* Relations (edges between nodes)

How can we learn to create/expand knowledge bases with
neural networks?

How can we learn from the information in knowledge
bases to improve neural representations?

How can we use structured knowledge to answer questions
(see also semantic parsing class)



Types of Knowledge Bases



WoraNet viller 1995)

* WordNet is a large database of words including
parts of speech, semantic relations
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[motor vehicle

motorcar
compact

hatch-back

* Nouns: is-a relation (hatch-back/car), part-of (wheel/car), type/instance distinction
e \erb relations: ordered by specificity (communicate -> talk -> whisper)
* Adjective relations: antonymy (wet/dry)

Image Credit: NLTK



CyC L enant 1995

A manually curated database attempting to encode
all common sense knowledge, 30 years In the making
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DBPedqla (auver et al. 2007

* Extraction of structured data from Wikipedia

Carnegie Mellon University

From Wik pedia, ths free encyclopsdia
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Freebase/WikiData

Bollacker et al. 2008

* Curated database of entities, linked, and extremely
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| earning Representations
for Knowledge Bases



_earning Knowledge Graph
Embeddings (Bordes et al. 2013)

* Motivation: express triples as additive
transformation

* Method: minimize the distance of existing r o,
triples with a margin-based loss that h, —" 7t

Y Y [y+dh+et)—dR +et),
(h,L,t)ES (W 4t")ESL, , 4y

* Note: one vector for each relation, (2) TransE

additive modification only,
intentionally simpler than NTN




Decomposable Relation
Moaqel (Xie et al. 2017)

* |dea: There are many relations, but each can be
represented by a limited number of “concepts”

* Method: Treat each relation map as a mixture of
concepts, with sparse mixture vector a

fr(h.t) =|e; -D-h+r—al - -D-t|,
» Better results, and also somewhat interpretable relations

similar_to(T) 0.8
similar_to(H) 0.7
instance_hypernym(T) 0.6
stance h :
CCD instance_ ypernym(H) 0.5
instance hyponym(T)

©
‘@ instance hyponym(H) . .
a4 hypernym(T) 0.3

hypernym(H) 0.2
hyponym(T) 0.1
nyponym(H) Il N
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Multi-hop Relational Context w/
Graph Neural Networks (schiichikrull et al., 2017)

* |dea: consider all the local neighborhood entities
instead of each triples

 Method: apply the message-passing framework
using Graph Convolutional Network

p(HHD) _ (Z > - Wmh(z) +W(>h<1>) Q‘ ”
rET\’,JGN .

» Recurrent application will allow ."

capturing K-nhop neighbor nodes.




Knowledge Base
Incompleteness

* Even w/ extremely large scale, knowledge bases
are by nature incomplete

* e.9.In FreeBase 71% of humans were missing
“date of birth” (West et al. 2014)

 Can we perform “relation extraction” to extract
information for knowledge bases?



Remember: Consistency In
Embeaddings

e.g. king-man+woman = queen (Mikolov et al. 2013)

WOMAN

/ AUNT QUEENS
MAN /

UNCLE KINGS \
QUEEN \ QUEEN

KING KING




Relation Extraction w/ Neural
Tensor NetworKs (socher et al. 2013)

* Afirst attempt at predicting relations: a multi-layer
perceptron that predicts whether a relation exists

upf (Wg.ie1 + Wgaes)

* Neural Tensor Network: Adds bi-linear teature
extractors, equivalent to projections in space

gle1, R, e3) = upf (e"lrWI[;:k]eg + Vg 2 + bR)

* Powerful model, but perhaps overparameterized!



|_earning from Text Directly



Distant Supervision for
Relation Extraction (vintz et al. 2009)

* (Given an entity-relation-entity triple, extract all text
that matches this and use it to train

[Steven Spielberg]’s film [Saving Private
Ryan] is loosely based on the brothers’ story.

Allison co-produced the Academy Award-
winning [Saving Private Ryan], directed by
[Steven Spielberg]...

* Creates a large corpus of (noisily) labeled text to
train a system



Relation Classification w/
CNNS (zeng et al. 2014)

e Extract features w/o syntax using CNN

e | exical features of the words themselves

o Features of the whole span extracted using convolution

[People] have been mouving back
into [downtown]
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Figurc 1: Architccture of the ncural network used
for relation classification.
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Jointly Modeling KB Relations
and lext (Toutanova et al. 2015)

e To model textual links between words w/ neural net:
aggregate over multiple instances of links in dependency tree

Textual Pattern Count
appos rep ob-

SUBJECT——founder——sof =—+QBJECT 12
. nsubj - dobj .

SUBJECT+——co-founded ——OBJECT 3
3 b1

SUBJECT—22% co-founder 2 of -4 OBJECT 3
i hj

SUBJECT —3,co-founder s of 22, 0B JECT 3

* Model relations w/ CNN

= max{h }
h =tanh(W v |+ W% + Wl [ +8)

7” — Ve

20D

= of —3» OBJECT

SUBJECT %, co-founder =2



Modeling Distant Supervision
Noise In Neural Models (Luo et al. 2017)

* |dea: there Is noise In distant supervision labels, so we
want to model it

IR L A VR
v Prediction predicted distr. .
— —» Encoder —» ; - —» Transformation —>/\/\
- R Noise I |
sentences <y embeddings Modeling — | U Observed distr.
< transition matrix

e By controlling the “transition matrix”, we can adjust to the
amount of noise expected in the data

« [race normalization to try to make matrix close to identity

e Start training w/ no transition matrix on data expected to
be clean, then phase in on full data



Using Knowledge Bases to
Inform Neural Models



Retrofitting of Embeddings to
EXISting LeXicons (Faruqui et al. 2015)

e Similar to joint learning, but done through post-hoc
transtormation of embeddings

« Advantage of being usable with any pre-trained
embeddings

* Double objective of making transtormed embeddings
close to neighbors, and close to original embedding

n

V(Q) =D laille—@llP+ D> Bijlle: — gl

=11 (ig)eE

e Can also force antonyms away from each-other
(Mrksic et al. 2016)



Injecting Knowledge Into
Language Models (ayashi et al 2020

* Provide LMs with topical knowledge in the form of copiable graphs
o Each (Wiki) text is given relevant KB taken from Wikidata

e Examine all possible decoding "paths’ and maximize the marginal
probability

<pbirth name> <birth date>
Relation <given nafes  <family nN
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Barack Hussein Obama | born  August 4 : 1961
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Reasoning over Text Corpus as a
Know\edge Base (Dhingra et al. 2020)

* Answering gquestions using text corpora as a traceable KB

Relevance matching over mentions

1. Create mention vectors

2. Retrieve relevant
mentions from pre-
trained models

3. Aggregate scores

Question: When was the Crateful Dead and Bob Dylan album released?

-------------------------------

“Expand

entities to
mentions
I °
Sparse
malrix set
product

|

fM)

: A Pretrained mention
Vg WGV | MBQMS representations

frsmopZ “EEN EEEEN N

answers l Context Linked KB Facts

M v Bab Dylanis Amarican singer- scb Dvlan, vy P
Dylan & the Dead |£] songwriter :l_t Dvlan, vrofession, 7
American beauly Grateful Dead formed In 1965 Grateful Dead, founded, |
Aggregate in Palo Alto, CA. Grateful Dead, 1 nnated, 7
i mentions
bl A to entities B Oylzn & the Dead is 2 Fve alburn by Dylen & the Dead, performer, 7
; Bob Dylan and Grateful Dead  Dylan & the Dead, performer, ?

: M—FE )\ J




Schema-Free
Extraction



Open Information Extraction
(Banko et al 2007)

e Basic idea: the text is the relation

* e.g. 'United has a hub in Chicago, which is the
headquarters of United Continental Holdings'

* {United; has a hub in; Chicago}

e {Chicago; is the headquarters of; United Continental
Holdings}

e Can extract any variety of relations, but does not
abstract



Rule-based Open |E

e.g. TextRunner (Banko et al. 2007), ReVerb (Fader et al.
2011)

Use parser to extract according to rules

e e.g. relation must contain a predicate, subject object
must be noun phrases, etc.

Train a fast model to extract over large amounts of data

Aggregate multiple pieces of evidence (heuristically) to
find common, and therefore potentially reliable, extractions



Neural Models for Open |E

« Unfortunately, heuristics are still not perfect

* Possible to create relatively large datasets by asking simple questions

(He et al. 2015):

UCD finished the 2006 championship as Dublin champions ,

finished

beating

by beating St Vincents in the final .

/Who finished something? - UCD h
What did somzone finish? - the 2006 championship
What did someone finish something as? - Dublin champions
How did someone finisk something? - by beating St Vincents in the final
,\Nhu beszl someone? - UCD h
When did somecne beat someone? - in the final
\\Nhu did someone beal? - SLVincenls )

* Can be converted into OpenlE extractions, for use in
supervised neural BIO tagger (Stanovsky et al. 2018)



_earning Relations from
Relations



Modeling Word Embeddings
vs. Modeling Relations

* Word embeddings give information of the word In
context, which is indicative of KB traits

* However, other relations (or combinations thereof)
are also indicative

* Thisis a link prediction problem in graphs



lensor Decomposition
(Sutskever et al. 2009)

* Can model relations by decomposing a tensor
containing entity/relation/entity tuples

N \ /‘\m/‘\
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Matrix Factorization to Reconcile

Schema-based and Open |E Extractions
(Riedel et al. 2013)
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Modeling Relation Paths

(Lao and Cohen 2010)

* Multi-step paths can be informative for indicating
individual relations

* e.g. "given word, recommend venue in which to
publish the paper”

ID Weight Feature

HasTitle ! In .

1 26.9 word » paper — journal

- HasTitle ' First Author FirstAuthor In .

2 4.5 word » paper » author » paper — journal
HasTitle ! AnyAuthor AnyAuthor ! In .

3 2.8 word » paper » author » paper — journal
GeneticallyRelated HasGene ! In .

4 1.1 gene » gene » paper — journal

HasGene ™ 1

ot

0.9 gene » paper — journal

AnyPaper Cite

6 0.6 e’ » paper —— paper ELR journal




Optimizing Relation Embeddings
over Paths (Guu et al. 2015)

* Traveling over relations might result in error propagation

 Simple idea: optimize so that after traveling along a path,
we still get the correct entity




Differentiable Logic Rules
(Yang et al. 2017)

Consider whole paths in a differentiable framework

HasOfficelnCity(New York, Uber)
CityInCountry(USA, New York)

Y = USA
" In whlch country Y >>

\C: d%x hfi"e ?ff_nce? o HasOfficeInCountry(Y, X) € HasOfficelnCity(Z, X), CitylnCountry(Y, Z)
_ IR —--\“b
C?,__ HasOfﬁceInCountry(Y X)? - __’:_D X=Lyt A
T - HasOfficelnCity(Paris, Lyft) Y = France

CityInCountry(France, Paris)

* [reat path as a sequence of matrix multiplies,
where the rule weight is a

Z allxep, Mg,
!



Questions?



