CS11-747 Neural Networks for NLP

| anguage Modeling,
Efficiency/Training Tricks

Graham Neubig

P Carnegie Mellon University
#7»" Language Technologies Institute

Site
https://phontron.com/class/nn4nlp2021/

https://phontron.com/class/nn4nlp2021/

Are These Sentences OK?

e Jane went to the store.
e store to Jane went the.
* Jane went store.

e Jane goed to the store.
* [he store went to Jane.

e The food truck went to Jane.

| anguage Modeling: Calculating
the Probability of a Sentence

P(X) :HP(QZ‘Z ‘ 1‘1,...,3’)@'_1)

NAAT

Next Word Context

The big problem: How do we predict
Plx; |x1,...,2;_1)

fa¥e

Review: Count-based
. anguage Models

Count-based Language
Models

 Count up the frequency and divide:
C(mi—n—l—h R 7332')
C(aji—n—l—la e 7xi—1)

* Add smoothing, to deal with zero counts:

P | Ti—n+1y-- s Tim1) =APyo(%i | Ticng1s- oo, Tim1)
—+ (1 —)\)P(.CEZ ‘ T1—n+2y - - - ,ZEi_l)

* Modified Kneser-Ney smoothing

A Refresher on Evaluation

* Log-likelihood:
LL(gtest) — Z lOgP(E)

EEgtest
* Per-word Log Likelihoo?:
WLL(gtest) — Z 10g P(E)

ZEEthSt ‘E| Ec&iest
* Per-word (Cross) Entropy:

1
H(Etest) —
* Perplexity:

Z —log, P(E)

ZEEgtest |E‘ EcEiest

PPl(Etest) = oH(Etest) — o=WLL(Etest)

What Can we Do w/ LMs?

e Score sentences:

Jane went to the store . — high
store to Jane went the . — low

(same as calculating loss for training)

e (Generate sentences:

while didn't choose end-of-sentence symbol:
calculate probability
sample a new word from the probability distribution

Problems and Solutions?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— solution: class based language models

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solution: skip-gram language models

 Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— solution: cache, trigger, topic, syntactic models, etc.

An Alternative:
Featurized Log-Linear Models

An Alternative:
Featurized Models

e Calculate features of the context
 Based on the teatures, calculate probabilities

* Optimize feature weights using gradient descent,
etc.

Example:

Previous words: “giving a°

ce 28\ =0 o3 (20

talk | -0.2| wyad 02 | wogungd 1-0 | s=| 1.0

gift 0.1 0.1 2.0 2.2
hat \1.2/ \0.5/ \-1.2/ \0.6/
| | How likely How likely
Words we're How likely are they are they Total

predicting arethey? given prev. given 2nd prev. score
word is “a”? word is “giving”?

Softmax

« Convert scores into probabilities by taking the
exponent and normalizing (softmax)

1
68(507;|33;_n+1)

P(z; | ¢} — ‘
(‘ z—n—l-l) 253 68(537;\35‘2:;4_1)
/gg\ /o.ooz\
-1 .O 0.003
= : » P=| 0.329

2.2 0.444
0-6/ \0.090/

A Computation Graph View

giving a

(lookup2 | (lookup1 | bias scores

b4
+ + @ =

b <
—

probs

softmaxj—E

Each vector is size of output vocabulary

A Note: "Lookup”

* Lookup can be viewed as “grabbing” a single
vector from a big matrix of word embeddings

num. words

[l LIl L LA LA LA

Vector [L e e L e L [T |

R L [L T S T [S T

" b OGO OG04
Slze L [T T [T = TS = | | k 2

e Similarly, can be viewed as multiplying by a “one-

hot” vector
num. words /O\

[l LIl L LA LA LA

VeCtOr R R TR S S TS IS IS T 1

el L I [T T e e | &

I b OO OO 0
SIZE PO OO0 \O/
ISV 2l \SalP el el Qe \Saely \2ell Y Yge™

e Former tends to be faste

Training a Model

 Reminder: to train, we calculate a “loss function’
(a measure of how bad our predictions are), and
move the parameters to reduce the loss

 The most common loss function for probabilistic
models is “"negative log likelihood”

/o.ooz\
It element 3 0.003

(or zero-indexed, 2) p=|[0.329 = -log —> 1.112
IS the correct answer: \0_444/

0.090

Parameter Update

 Back propagation allows us to calculate the
derivative of the loss with respect to the parameters

o
96

e Simple stochastic gradient descent optimizes
parameters according to the following rule
94

0<—0—a—
< 0489

Choosing a Vocabulary

Unknown Words

* Necessity for UNK words
 \We won't have all the words in the world in training data

e Larger vocabularies require more memory and
computation time

« Common ways:
* Frequency threshold (usually UNK <= 1)

e Rank threshold

Evaluation and Vocabulary

* Important: the vocabulary must be the same over
models you compare

* Or more accurately, all models must be able to
generate the test set (it's OK it they can generate
more than the test set, but not less)

* e.9. Comparing a character-based model to a
word-based model is fair, but not vice-versa

L et’s try it out!
(loglin-1m.pvy)

What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— not solved yet

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solved! &)

 Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &

Beyond Linear Models

| Inear Models can't Learn
Feature Combinations

students take tests— high teachers take tests — low
students write tests = low teachers write tests = high

 These can't be expressed by linear teatures

e \What can we do?

« Remember combinations as features (individual
scores for “students take”, “teachers write”)
— Feature space explosion!

e Neural nets

Neural Language Models

giving a * (See Bengio et al. 2004)

\ /
(Iookup] Clookup]
3/

\ @ ﬁanh(

;: kVV1 h + b1)
b
b <

W

L0

i h r
2) i
b < b <
— (b
T - - &= Softmax)—> 5
2) o b

bias scores probs

Where is Strength Shared?
giving a

\
[Iookup]

/ L
Gookup] Similar output words

get similar rows in
in the softmax matrix
b4
b P
tanh(Similar contexts get
@ tW#h +b

/ similar hidden states

Pl

b <

Word embeddings:
Similar input words |
get similar vectors bias scores

-

B b <
» < < o
b4 — {Softmax}
o b <

,orbs

What Problems are Handled?

* Cannot share strength among similar words

she bought a car she bought a bicycle
she purchased a car she purchased a bicycle

— solved, and similar contexts as well!l &

* Cannot condition on context with intervening words
Dr. Jane Smith Dr. Gertrude Smith

— solved! &)

 Cannot handle long-distance dependencies

for tennis class he wanted to buy his own racquet
for programming class he wanted to buy his own computer

— not solved yet &

L et’s Try it Out!
(nn-1m.pvy)

Tying Input/Output
Embeaddings

giving a
 We can share parameters
Cpick row] Cpick row between the input and output
h embeddings (Press et al.
- 2016, inter alia)
b <
ﬁanh(
: kVkah + 1)

H
H

P <
W + I{softm ax)—»l
b/as scores probs

Want to try”? Delete the input embeddings, and
instead pick a row from the softmax matrix.

' (POWOP

Optimizers

Standard SGD

 Reminder: Standard stochastic gradient descent does

gt — vet—lg(et—l)

Gradient of Loss

0y =01 — Qgt

Learning Rate

* There are many other optimization options! (see
Ruder 2016 in references)

SGD With Momentum

« Remember gradients from past time steps

V¢ = YU¢—1 1+ NG¢

Previous Momentum

Momentum
Momentum

Conservation
Parameter

0y =0i_1 — vy

- Intuition: Prevent instability resulting from sudden changes

Adagrad

* Adaptively reduce learning rate based on
accumulated variance of the gradients

G =Gi—1+ 9+ © gy

Squared Current Gradient

Ui
\/Gt —|—€gt

— Small Constant

 Intuition: frequently updated parameters (e.g. common word
embeddings) should be updated less

- Problem: |learning rate continuously decreases, and training can
stall -- fixed by using rolling average in AdaDelta and RMSProp

Adam

Most standard optimization option in NLP and beyond
Considers rolling average of gradient, and momentum

my = Bime—1 + (1 — B1)9: Momentum
vy = BaUs—1 + (1 — 52)% © g+ Rolling Average of Gradient

Correction of bias early in training
my . Ut

T1-(B)t 1 (B

Final update

A

Uz

Training Iricks

Shuftling the Training Data

e Stochastic gradient methods update the
parameters a little bit at a time

e \What if we have the sentence “l love this
sentence so much!” at the end of the training
data 50 times”?

e Jo train correctly, we should randomly shuftle the
order at each time step

Simple Methods to Prevent Over-fitting

 Neural nets have tons of parameters: we want to prevent
them from over-fitting

« Early stopping:

e monitor performance on held-out development data
and stop training when it starts to get worse

 Learning rate decay:
« gradually reduce learning rate as training continues, or
e reduce learning rate when dev performance plateaus

- Patience:

- learning can be unstable, so sometimes avoid
stopping or decay until the dev pertformance gets
worse n times

Which One to Use?

Adam is usually fast to converge and stable

But simple SGD tends to do very will in terms of
generalization (Wilson et al. 2017)

You should use learning rate decay, (e.g. on Machine
translation results by Denkowski & Neubig 2017)

WMT German-English

—&— Adam
—#— SGD

15 20
Training Sentences (millions)

BLEU

14

12

11;

WMT English-Finnish

—&— Adam
—i— SGD

8 10 12 14
Training Sentences (millions)

BLEU

271

251

WMT Romanian-English

—&— Adam |
—#— SGD

4 6
Training Sentences (millions)

Dropout

(Srivastava+ 14)

* Neural nets have lots of parameters, and are prone
to overfitting

Dropout: randomly zero-out nodes in the hidden
layer with probability p at training time only

« Because the number of nodes at training/test is different, scaling is
necessary:

« Standard dropout: scale by p at test time
 Inverted dropout: scale by 1/(1-p) at training time

* An alternative: DropConnect (Wan+ 2013) instead zeros out
weights in the NN

| et’s Try it Out!
(nn-1m-optim.pvV)

Efficiency Tricks:
Operation Batching

Efficiency Tricks:
Mini-batching

 On modern hardware 10 operations of size 1 is
much slower than 1 operation of size 10

* Minibatching combines together smaller operations
INto one big one

Minibatching

Operations w/o Minibatching

W x, b W
tanh(eee® 2 + 2) tanh(eee®
o O
Operations with Minibatching
X, X, X, %concath
W X

tanh(o.&i‘:

W X

w

b
f) tanh(eee
®

[
o
@

r——{broadcast%— b
B

+§)

Manual Mini-batching

Group together similar operations (e.g. loss calculations
for a single word) and execute them all together

* In the case of a feed-torward language model, each
word prediction In a sentence can be batched

* For recurrent neural nets, etc., more complicated
How this works depends on toolkit

* Most toolkits have require you to add an extra
dimension representing the batch size

* DyNet has special minibatch operations for lookup
and loss functions, everything else automatic

Mini-batched Code Example

in_words is a tuple (word_1, word_2)

out_label i1s an output label

word_1 = E[in_words[0]]

word_2 = E[in_words[1]]

scores_sym = W*dy.concatenate([word_1, word_2])+b
loss_sym = dy.pickneglogsoftmax(scores_sym, out_label)

(a) Non-minibatched classification.

in_words 1s a list [(word_{1,1}, word_{1,2}), (word_+{2,1}, word_{2,2}), ...]
out_labels s a list of output labels [label_1, label_2, ...]

word_1_batch = dy.lookup_batch(E, [x[0] for x in in_words])
word_2_batch = dy.lookup_batch(E, [x[1] for x in in_words])
scores_sym = Wxdy.concatenate([word_1_batch, word_2_batch])+b

loss_sym = dy.sum_batches(dy.pickneglogsoftmax_batch(scores_sym, out_labels))

(b) Minibatched classification.

| et’s Try it Out!
(nn-1m-batch.pvy)

Automatic Optimization

Automatic Mini-batching!

Three input sequences,
different lengths.

e TensorFlow Fold, DyNet Autobatching (see Neubig et al.
2017)

e Try it withthe —dynet-autobatch command line option

Autobatching Usage

e for each minibatch:
» for each data point in mini-batch:
» define/add data
* sum losses
» forward (autobatch engine does magic!)
- backward

-+ update

Speed Improvements

i m for grgph mfor calc = back graph mback calc ®mupdate m for graph mfor calc = back graph ™ back calc ®update
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
4
P ————— T L T s e
Z10n HE | p— — §<8épm I mmw
* lagenca HH | N D * lagenca Il | D
1 '}
2 ane TN | | — g (Ao 1| -
- |
& Sépm I | - —— §oepn | | NN
B e I | I S
_u;468101214161820 _Q;468101214161820

Table 1: Sentences/second on various training tasks for increasingly challenging batching scenarios.

Task CPU GPU

NOAUTO BYDEPTH BYAGENDA | NOAUTO BYDEPTH BYAGENDA
BiLSTM 16.8 139 156 56.2 337 367
BiLSTM w/ char 15.7 93.8 132 43.2 183 275
TreeLSTM 50.2 348 357 76.5 672 661
Transition-Parsing 16.8 61.0 61.2 33.0 89.5 90.1

Code-level Optimization

* e.g. TorchScript provides a restricted representation
of a PyTorch module that can be run efficiently in C++

class MyCell (torch.nn.Module):
def __init__()
super (MyCell,).__init__ ()
.linear = torch.nn.Lineax(4, 4)

def forward(, X, h): import __torch__
new_h = torch.tanh(.linear(x) + h 1import __torch__.torch.nn.modules.linear
return new_h, new_h def forward(self,
input: Tensor,
my_cell = MyCell() h: Tensor) -> Tuple[Tensor, Tensor]:
X, h = torch.rand(3, 4), torch.rand(3, 4) 0 = self.linear
traced_cell = torch.jit.trace(my_cell, (x, h). weight = _0.weight
print(traced_cell) bias = _0.bias
traced_cell(x, h) _1 = torch.addmm(bias, input, torch.t(weight), beta=1, alpha=1)

_2 = torch.tanh(toxch.add(_1, h, alpha=1))
return (2, _2)

A Case Study:
Regularizing and Optimizing LSTM
Language Models (Merity et al. 2017)

Regularizing and Optimizing LSTM
Language Models (Merity et al. 2017)

 Uses LSTMs as a backbone (discussed later)
* A number of tricks to improve stability and prevent overfitting:
* DropConnect regularization

 SGD w/ averaging triggered when model is close to
convergence

* Dropout on recurrent connections and embeddings

* Weight tying

* Independently tuned embedding and hidden layer sizes
* Regularization of activations of the network

¢ Strong baseline for language modeling, SOTA at the time
(without special model, just training methods)

IN-class Discussion

* |f you have experience with neural networks, what
IS your standard set of tricks that you use in most
projects”

* Do you find that these tricks vary from genre to
genre, some are more useful in vision and some
are more useful in NLP??

Questions?

